DB2 UDB V8.1

rrrrrrrrrrrrrr

Graeme Birchall ©

DB2 UDB V8.1 Cookbook ©

Preface

Important!

If you didn't get this document directly from my website, you may have got an older edition.
The book gets changed all the time, so if you want the latest, go to the source. Also, the latest
edition is usually the best book to have, even if you are using an older version of DB2, asthe
examples are often much better.

This Cookbook isfor DB2 UDB for Windows, UNIX, LINX, OS/2, etc. It is not suitable for
DB2 for zZ/OS or DB2 for AS/400. The SQL in these two products is quite different.

Disclaimer & Copyright

DISCLAIMER: This document is a best effort on my part. However, | screw up all the time,
so it would be extremely unwise to trust the contents in its entirety. | certainly don’'t. And if
you do something silly based on what | say, lifeistough.

COPYRIGHT: Y ou can make as many copies of this book as you wish. And | encourage you
to giveit to others. But you cannot sell it, nor charge for it (other than to recover reproduction
costs), nor claim the material as your own, nor replace my name with another. Secondary dis-
tribution for gain is not alowed. Y ou are also encouraged to use the related class notes for
teaching. In this case, you can charge for your time and materials (and your expertise). But
you cannot charge any licensing fee, nor claim an exclusive right of use.

TRADEMARKS: Lots of words in this document, like "DB2", are registered trademarks of
the IBM Corporation. And lots of other words, like "Windows", are registered trademarks of
the Microsoft Corporation. Acrobat is aregistered trademark of the Adobe Corporation.

Tools Used

This book was written on a Dell PC that came with oodles or RAM. All testing was done on
DB2V8.1.4. Word for Windows was used to write the document. Adobe Acrobat was used to
make the PDF file. As always, the book would have been written in half the time if Word for
Windows wasn't such a bunch of bug-ridden junk.

Book Binding

This book looks best when printed on a doubled sided laser printer and then suitably bound.
Tothisend, | did some experiments a few years ago to figure out how to bind books cheaply
using commonly available materials. | came up with what | consider to be a very satisfactory
solution that is fully documented on page 341.

Author / Book

Author: Graeme Birchall ©
Address: 1 River Court, Apt 1706
Jersey City NJ 07310-2007

Ph/Fax: (201) -963-0071

Email: Graeme_Birchall@compuserve.com

Web: http://ourworld.compuserve.com/homepages/Graeme Birchall
Title: DB2 UDB V8.1 SQL Cookbook ©

Date: 4-Feb-2004

Preface 3

Graeme Birchall ©

Author Notes

Book History

This book originally began a series of notes for my own use. After awhile, friends began to
ask for copies, and enemies started to stedl it, so | decided to tidy everything up and give it
away. Over the years, new chapters have been added as DB2 has evolved, and | have found
new ways to solve problems. Hopefully, this process will continue for the foreseeable future.

Why Free

This book is free because | want people to use it. The more people that use it, and the more
that it helps them, then the more inclined | am to keep it up to date. For these reasons, if you
find this book to be useful, please share it with others.

This book isfree, rather than formally published, because | want to deliver the best product
that | can. If | had a publisher, | would have the services of an editor and a graphic designer,
but I would not be able to get to market so quickly, and when a product changes as quickly as
DB2 does, timelinessisimportant. Also, giving it away means that | am under no pressure to
make the book marketable. | simply include whatever | think might be useful.

Other Free Documents

The following documents are also available for free from my web site:

e SAMPLE SQL: The complete text of the SQL statements in this Cookbook are available
inan HTML file. Only thefirst and last few lines of the file have HTML tags, therest is
raw text, so it can easily be cut and paste into other files.

e CLASSOVERHEADS: Selected SQL examples from this book have been rewritten as
class overheads. This enables one to use this material to teach DB2 SQL to others. Use
this cookbook as the student notes.

e OLDER EDITIONS: This book is rewritten, and usually much improved, with each new
version of DB2. Some of the older editions are available from my website. The others can
be emailed upon request. However, the latest edition is the best, so you should probably
useit, regardless of the version of DB2 that you have.

Answering Questions

Asarule, | do not answer technical questions because | need to have alife. But I'm interested
in hearing about interesting SQL problems, and also about any bugs in this book. However
you may not get a prompt response, or any response. And if you are obviously an idiot, don't
be surprised if | point out (for free, remember) that you are idiot.

Graeme

DB2 UDB V8.1 Cookbook ©

Book Editions

Upload Dates

1996-05-08: First edition of the DB2 V2.1.1 SQL Cookbook was posted to my web site.
Thisversion was is Postscript Print File format.

1998-02-26: The DB2V2.1.1 SQL Cookbook was converted to an Adobe Acrobat file
and posted to my web site. Some minor cosmetic changes were made.

1998-08-19: First edition of DB2 UDB V5 SQL Cookbook posted. Every SQL statement
was checked for V5, and there were new chapters on OUTER JOIN and GROUP BY .

1998-08-26: About 20 minor cosmetic defects were corrected in the V5 Cookbook.
1998-09-03: Another 30 or so minor defects were corrected in the V5 Cookbook.
1998-10-24: The Cookbook was updated for DB2 UDB V5.2.

1998-10-25: About twenty minor typos and sundry cosmetic defects were fixed.

1998-12-03: IBM published two versions of the V5.2 upgrade. The initial edition, which
| had used, evidently had alot of problems. It was replaced within aweek with amore
complete upgrade. This book was based on the later upgrade.

1999-01-25; A chapter on Summary Tables (new in the Dec/98 fixpack) was added and
all the SQL was checked for changes.

1999-01-28: Some more SQL was added to the new chapter on Summary Tables.

1999-02-15: The section of stopping recursive SQL statements was completely rewritten,
and a new section was added on denormalizing hierarchical data structures.

1999-02-16: Minor editorial changes were made.

1999-03-16: Some bright spark at IBM pointed out that my new and improved section on
stopping recursive SQL was all wrong. Damn. | undid everything.

1999-05-12: Minor editorial changes were made, and one new example (on getting mul-
tiple counts from one value) was added.

1999-09-16: DB2 V6.1 edition. All SQL was rechecked, and there were some minor ad-
ditions - especially to summary tables, plus a chapter on "DB2 Dislikes".

1999-09-23: Some minor layout changes were made.
1999-10-06: Some bugs fixed, plus new section on index usage in summary tables.
2000-04-12: Some typos fixed, and a couple of new SQL tricks were added.

2000-09-19: DB2 V7.1 edition. All SQL was rechecked. The new areas covered are:
OLAP functions (whole chapter), ISO functions, and identity columns.

2000-09-25: Some minor layout changes were made.

2000-10-26: More minor layout changes.

2001-01-03: Minor layout changes (to match class notes).
2001-02-06: Minor changes, mostly involving the RAND function.

Book Editions 5

Graeme Birchall ©

e 2001-04-11: Document new featuresin latest fixpack. Also add anew chapter on Iden-
tity Columns and completely rewrite sub-query chapter.

e 2001-10-24: DB2 V7.2 fixpack 4 edition. Tested all SQL and added more examples, plus
anew section on the aggregation function.

e 2002-03-11: Minor changes, mostly to section on precedence rules.

e 2002-08-20: DB2 V8.1 (beta) edition. A few new functions are added, plusthereisa
new section on temporary tables. The Identity Column and Join chapters were completely
rewritten, and the Whine chapter was removed.

e 2003-01-02: DB2 V8.1 (post-Beta) edition. SQL rechecked. More examples added.

e 2003-07-11: New chapters added for temporary tables, compound SQL, and user defined
functions. New DML section also added. Halting recursion section changed to use user-
defined function.

e 2003-09-04: New sections on complex joins and history tables.
e 2003-10-02: Minor changes. Some more user-defined functions.
e 2003-11-20: Added "quick find" chapter.

e 2003-12-31: Tidied up the SQL in the Recursion chapter, and added a section on the
merge statement. Completely rewrote the chapter on materialized query tables.

e 2004-02-04: Added select-from-DML section, and tidied up some code. Also managed
to waste three whole days due to bugs in Microsoft Word.

Writing Software Whines

This book iswritten using Microsoft Word for Windows. I've been using this product for ap-
proximately ten years, and it has always been a bunch of bug-ridden junk. | could have writ-
ten more than twice as much that was twice as good in half the time, if it weren't for all of the
unnecessary bugsin Word. So if somebody from Microsoft is reading this note, and if they
feel committed to delivering decent software, kindly contact me.

Unfortunately, I'm probably going to be stuck with Word for awhile. I've spent quite a bit of
time looking at the aternatives and they are generally less productive, or have their own set
of bugs, or are just wonderful, but cost too much and/or take too long to learn. Also unfortu-
nately, | am now getting to the point where Word is so buggy that it is all but impossible to
add new stuff to this document. Damn.

DB2 UDB V8.1 Cookbook ©

Table of Contents

e X o = 3
AUTHOR NOTES . ittuiiitiiii ittt e et e e e e e et e e et e e et e e et s e et s eeba s e st sestasaetasaetaseetnsartnrersnans 4
L0 S =1 11 N 5
QI =1 = = @@ Vi o = N 5 7
QUICK FIND ..ttt e e e e et e e e e e e e s e b bbb e e e e e e e e s s aanbbbeeeeeeeesennnrees 13

Lo =21 q 0} 0] o= o) £ SRS 13
N 0] 010 o 1 T I 0 I 17

Syntax Diagram Conventions..... .17
SQL Components ..

DB2 Objects.............18
DB2 Data Types19
Distinct Types21
SELECT Statement 22
FETCH FIRST Clause. .24
Correlation Name..... ...25
Renaming Fields......26
Working with Nulls26
Quotes and Double-quotes. .27
SQL Predicates...... ..28
Basic Predicate........28
Quantified Predicate .28
BETWEEN Predicate... .29

EXISTS Predicate....
IN Predicate..........30

LIKE Predicate. ...30
NULL Predicate32
Precedence Rules32
(07 NS I N o] €131 (o o PP RRSUPPPTPIN 33
WALUES ClAUSE . .uuiiiiiie e ettt ettt e ettt e e e e e e ettt e e e e e e e et aa e e aaeeesasttaaaeaeeeeeastaaaeeaeeesassnnaaaaeaans 34
(07 20T S o =TST=] Lo o O PEERRR 37
DML (Data Manipulation Language) ..40
Insert..... .40
Update .43
Delete........coecveenene .46
Select DML Changes... 47
Y LT 1= OOt 51
COMPOUND SQL ..ttiitiiie ettt e e e e et e e e e e e e s e e bbb e e e e e e e e e e sanbbeeeeeaeessannneees 57
Introduction .
SEAEMENT DEIIMILET ...ttt h bbbt bt e b e e b e e b e e bt e bt e ab e e ab e e b e s b e e sbe e bt e b e e e b e enneens 57
SOQL StAt@MENT USAGE ... e 58
DECLARE Variables...........58
FOR Statement.........cccoceenene59
GET DIAGNOSTICS Statement.59
IF Statementcccoeeeveennenne ...60
ITERATE Statement ...60
LEAVE Statement....61
SIGNAL Statement61
WHILE Statement....61
Other Usage.. .62
Trigger.....ccoe.e. .63
Scalar Function63
QI Lo] (oI T Tox 1o o TP SRR 64
COLUMN FUNCTIONS. ...cetttttttttetesesesssssseesssssesessesesssesesseeeeseeeeeeeeessereesererrrrrererrerrerrer 67
Introduction67
Column Functions, Definitions.. ..67
AVG oo .67
CORRELATION ...69
(10 11\ LT TP T TP P UR PP PROPN 69

Table of Contents 7

Graeme Birchall ©

COUNT_BIG
COVARIANCE
GROUPING

VAR or VARIANCE .
(@I N = L U] N (o T 75
[N Ao o LU Te] £ 1o] o N RUTRPRRRPPRRPPRPIRt 75
OLAP Functions, Definitions .. .78
Ranking Functions................. ... 78

Row Numbering Function
Aggregation Function

SCALAR FUNCTIONS .101
Introduction
Sample Data...
Scalar FUNCLIONS, DEFINITIONSuuiiiiiii s aassanssnanssnsssnnnnnsnsnnnns 101

ABS or ABSVAL ...

COALESCE.
CONCAT...
COS ...
COSH.
COT ...
DATE

DAYNAME ...
DAYOFWEEK....
DAYOFWEEK_ISO
DAYOFYEAR..

DECRYPT_BIN and DECRY/

PT_CHAR
DIFFERENCE

DLCOMMENT....
DLLINKTYPE
DLURLCOMPLETE ..
DLURLPATH
DLURLPATHONLY
DLURLSCHEME....
DLURLSERVER.

FLOOR..
GENERATE_UNIQUE. 116
GETHINT 117

INT OF INTEGER ..ot bbb bbb bbb bbb

DB2 UDB V8.1 Cookbook ©

JULIAN_DAY
LCASE or LOWER..

MIDNIGHT_SECONDS

MINUTE ..

RAISE_ERROR
RAND...
REAL...
REC2XML ..

SMALLINT
SNAPSHOT Functions ..
SOUNDEX

TIMESTAMP.
TIMESTAMP_FORMAT
TIMESTAMP_ISO...
TIMESTAMPDIFF

VARCHAR_FORMAT
VARGRAPHIC
VEBLOB_CP_LARGE
VEBLOB_CP_LARGE

Table of Contents 9

Graeme Birchall ©

"/" DIVIDE

“|I" CONCAT

USER DEFINED FUNCTIONSiitiiietieit e e e ee e e e e e st s e st s s st s s saa s s sanssean e sanessaneranerens 149
Yo 0T goz=To I =TT aTe] 1o] o F-3 RN 149
Scalar Functions . .151

Description
Examples........
Table Functions

Description
Examples

ORDER BY, GROUP BY, AND HAVINGuiiiiiiiiiiiiii et e e eeat e e e eaa e eees 159
[LgLigeTo [Tot i o] o I T O PP P PP PR PSP 159
(o 1) SO PEEES 159
Sample Data...... ...159

Order by Examples

GrouP BY @Nd HAVING ...eiiiiiiieiiiie ettt sttt e e sib e e et e e e s nbb e e e snbe e e e e e neeas 161
GROUP BY Sample Data

Simple GROUP BY Statements
GROUPING SETS Statement
ROLLUP Statement
CUBE Statement
Complex Grouping Sets - Done Easy
Group By and Order By
Group By in Join
COUNT and No Rows

Why Joins Matter
Sample Views....
Join Syntax ..
ON vs. WHERE .
Join Types.
Inner Join
Left Outer Join ...
Right Outer Join.
Full Outer Joins..
Cartesian Product
Lo T 1o I N[0 £ PO PPP PP PPN
Using the COALESCE Function
Listing non-matching rows only .
Join in SELECT Phrase..........
Predicates and Joins, a Lesson
Joins - Things to Remember ..
Complex Joins

S = L O 11 =
ST L0 o] (S I U (=TT PP
Sub-query Flavours
Sub-query Syntax
Correlated vs. Uncorrelated Sub-Queries
Multi-Field Sub-Queries....................
Nested Sub-Queries.....
Usage Examples..
True if NONE Match .
True if ANY Match .
True if TEN Match
True if ALL match

UNION, |NTERSECT, AND EXCEPT.
Syntax Diagram
Sample Views
(0 L7: To T3 N (o] £ SO PPPPPPPPPPPPPPPPPRE 214
Union & Union Alll...... .
Intersect & Intersect All
Except & Except All ..
Precedence Rules .
Unions and Views

MATERIALIZED QUERY TABLESuuttiiiiiieieiiiitititeeeeeesssittteeeeeee s s s ssasnbseeeeeaessssnssnseeeeens 217
Usage Notes......... . .217
Select StatemMENt RESITICHONSccuiiiiiiiiieieiee ittt e et e e e s b e e e e enesn et e se e e e e e e e sne e e e e 219

10

DB2 UDB V8.1 Cookbook ©

Refresh Deferred Tables
Refresh Immediate Tables ..
Usage Notes and Restrictions...
Multi-table Materialized Query Tables....
Indexes on Materialized Query Tables
Organizing by Dimensions
USING StAGING TADIES ...ttt ettt e et b e e e et e e e

IDENTITY COLUMNS AND SEQUENCESvteveeeeeeeeeeeeeeseeeeeeseeeseseeeesssieeeseseeenesieesnenes 229

Identity Columns
Rules and Restrictions
Altering Identity Column Options
Gaps in the Sequence
Roll Your Own - no Gaps in Sequence ..
IDENTITY_VAL_LOCAL Function....
SEOUEBIICES .t
Getting the Sequence Value... .
Multi-table Usage....
Counting Deletes

Identity Columns vs. Sequences - a Comparison 242

TEMPORARY TABLES ...iiiiiiiitiie e ettt e ettt e e e e e e e e et s e e e e e e e eesbbn s e e e e e eeeerbaann s 243
L aY (o Yo [V} £ Lo o I OO PP PPPPRRIOt 243
Temporary Tables - iN STAtEMENTooiii i e e e e s e e e e e e e nnnnneees 245
COMMON TADIE EXPIESSIONcviiiiiitiiti ittt sttt e e e e et e b e e e nn e e ne e e e e sneenenne e 246
FUI-SIBCT ... h bbb bbb b o2 b e oAbt e he e b e e bt e b e e b e e s b e e ab e ab e bt he e b e bbb 248
Declared Global Temporary TabIES.........coev i e e s e e e e s e eaaee e e e e e s enees 251

RECURSIVE SQL ...ttt e e e e e e e e e e s s snnbaeeeeeeas 255
Use Recursion To .

When (Not) to Use Recursion.
How Recursion Works .
List Dependents of AAA ...

Notes & Restrictions..........

Sample Table DDL & DML
[ahagoTe [0To] o] oY = L=ToT UL £=] o] o WSO 258
List all Children #1258

List all Children #2 ..
List Distinct Children..
Show Item Level
Select Certain Levels
Select Explicit Level
Trace a Path - Use Multiple Recursions.
Extraneous Warning Message
Logical HIErarChy FIAVOUISuii ittt ettt sttt e et e e e e nnbeeesnbeeeean
Divergent Hierarchy
Convergent Hierarchy...
Recursive Hierarchy
Balanced & Unbalanced Hierarchies
Data & Pointer Hierarchies
Halting Recursive Processing
Sample Table DDL & DML

Stop After "n" Levels.....
Stop When Loop Found...
Keeping the Hierarchy Clean..
Clean Hierarchies and Efficient Joins .
Introductioncccceeeveenenne ...273
Limited Update Solution
Full Update Solution ..

FUNWITHSQL 279
Creating SAMPIE DALAuuiiiie e e e e et e e e e e st e e e e e e st e e e e e e e anrraeeeaeeeannraaneeeeeaaan 279
Create a Row of Data .

Create "n" Rows & Columns of Data
Linear Data Generation
Tabular Data Generation ..
Cosine vs. Degree - Table of Values
Make Reproducible Random Data
Make Random Data - Different Ranges .
Make Random Data - Different Flavours
Make Random Data - Varying Distribution.
Make Test Table & Data
LY =T Lot o o Tt E1 = 1 o o SO

FiNd OVETAPPING ROWS ...ttt et e et e et e e e e e e eeeee e

Table of Contents 11

Graeme Birchall ©

Find Gaps in Time-Series
Show Each Day in Gap
RELAINING @ RECOTNT ... eeiiiiiie ettt e e e e s ettt e e e e e s sttt e aeee e s s ntaneaaaeesaansnneeaeeeaannnnes

Recording Changes .
Multiple Versions of the World
(@1 1= g LT o T I 1 o =PRSS

Convert Character to Numeric.. .
Convert Number to Character
Convert Timestamp to Numeric...
Selective Column Output
Making Charts Using SQL
Multiple Counts in One Pass

Multiple Counts from the Same Row..... ..304
Find Missing Rows in Series / Count all Values. ..306
Normalize Denormalized Data..... ..307

Denormalize Normalized Data..
Reversing Field Contents ...
Stripping Characters
Sort Character Field Contents
Query Runs for "n" Seconds..
Calculating the Median

QUIRKS IN SQL .ttt e e e et e e e e e e e s s nnbb b e e e e e e e e s snnnnees

Trouble with Timestamps
No Rows Match
Dumb Date Usage
RAND in Predicate
Date/Time Manipulation..
Use of LIKE on VARCHAR.
Comparing Weeks....
DB2 Truncates, not Rounds
CASE Checks in Wrong Sequence.
Division and Average
Date Output Order
Ambiguous Cursors ..

Floating Point Numbers ..329

Legally INCOMECE SQLocuiiiiiiii i bbb bbb bbb 331
Y = = =N PPN 333

DB2 SAMPIE TADIES .ottt ettt et ettt e e et e e e bt e e e bt e e e nbbe e e e nnae e e araeaean 333

Class Schedule..

Department..

Employee.....

Employee Activity ..
Employee Photo
Employee Resume

Organization ...
Project...

Sales..

Staff....
BOOK BINDING ...ctuiietiiitiiei e e et e e e e e e e e e e et e e e b e e s e e e eaa s e eaa s s ean s san s ean e eaneraneranerens 341
1N =5 343

12

DB2 UDB/V8.1 Cookbook ©

Quick Find

This brief chapter is for those who want to find how to do something, but are not sure what
thetask is called. Hopefully, thislist will identify the concept.

Index of Concepts

Join Rows

To combine matching rows in multiple tables, use ajoin (see page 177).

EMP_NM EMP_JB

B + - --- +
ID|NAME ID|JOB
10| Sanders 10|Sales
20 |Pernal 20| Clerk
50 |Hanes - +

B +

Figure 1, Join example

Outer Join

SELECT nm.id ANSWER
, M. name ================
,jb.job ID NAME JOB
FROM emp nm nm -- mmmmmmm mm-e-
,emp_jb jb 10 Sanders Sales
WHERE nm.id = jb.id 20 Pernal Clerk
ORDER BY 1;

To get al of the rows from one table, plus the matching rows from another table (if there are
any), use an outer join (see page 180).

EMP_NM EMP_JB
B + +-------- +
ID | NAME ID|JOB
10|Sanders 10|Sales
20| Pernal 20|Clerk
50 |Hanes - +
+o-mm - - +

Figure 2,Left-outer-join example

SELECT nm. id ANSWER
,m.name ================
,jb.job ID NAME JOB
FROM emp_nm nm i
LEFT OUTER JOIN 10 Sanders Sales
emp jb jb 20 Pernal Clerk
ON nm.id = jb.id 50 Hanes -

ORDER BY nm.id;

To get rows from either side of the join, regardless of whether they match (the join) or not,

use afull outer join (see page 184).

Null Values - Replace

Use the COALESCE function (see page 106) to replace anull value (e.g. generated in an

outer join) with anon-null value.
Select Where No Match

To get the set of the matching rows from one table where something is true or false in another
table (e.g. no corresponding row), use a sub-query (see page 199).

EMP_NM EMP_JB
B + +-------- +
ID | NAME ID|JOB
10|Sanders 10|Sales
20| Pernal 20|Clerk
50 |Hanes - +
+o-mm - - +

Figure 3, Sub-query example

Quick Find

SELECT * ANSWER

FROM emp_nm nm ========

WHERE NOT EXISTS ID NAME
(SELECT * == =====
FROM emp_jb jb 50 Hanes
WHERE nm.id = jb.id)

ORDER BY id;

13

Graeme Birchall ©

Append Rows
To add (append) one set of rows to another set of rows, use a union (see page 213).

EMP_NM EMP_JB SELECT * ANSWER
+---mm--—— + - ---- + FROM emp_nm =========
ID |NAME ID|JOB WHERE name < 'S’ ID 2
--------- ------- UNION - ——----
10|Sanders 10|Sales SELECT * 10 Sales
20 |Pernal 20| Clerk FROM emp jb 20 Clerk
50 |Hanes - + ORDER BY 1,2; 20 Pernal
- mmmmm - + 50 Hanes

Figure 4, Union example
Assign Output Numbers
To assign line numbers to SQL output, use the ROW_NUMBER function (see page 84).

EMP_JB SELECT id

tommomm-- + »job ANSWER
ID|JOB ,ROW_NUMBER () OVER(ORDER BY job) AS R ==========
SR —— FROM emp_ jb ID JOB R
10|Sales ORDER BY job; R -
20| Clerk 20 Clerk 1
Foomommoo + 10 Sales 2

Figure 5, Assign row-numbers example
Assign Unique Key Numbers

The make each row inserted into a table automatically get a unique key value, use an identity
column, or a sequence, when creating the table (see page 229).

If-Then-Else Logic
To include if-then-else logical constructsin SQL stmts, use the CA SE phrase (see page 37).

EMP_JB SELECT id ANSWER
+------—- + ,job ===============
ID|JOB , CASE ID JOB STATUS
--|----- WHEN job = ’Sales’ R
10|Sales THEN ’'Fire’ 10 Sales Fire
20|Clerk ELSE ’'Demote’ 20 Clerk Demote
L + END AS STATUS

FROM emp_jb;

Figure 6, Case stmt example
Get Dependents

To get all of the dependents of some object, regardless of the degree of separation from the
parent to the child, use recursion (see page 255).

FAMILY WITH temp (persn, 1lvl) AS ANSWER

P + (SELECT parnt, 1 =========
PARNT | CHILD FROM family PERSN LVL
—————————— WHERE parnt = ’‘Dad’ ———— ---
GrDad |Dad UNION ALL Dad 1
Dad Dghtr SELECT child, Lvl + 1 Dghtr 2
Dghtr|GrSon FROM temp, GrSon 3
Dghtr |GrDtr family GrDtr 3
B it + WHERE persn = parnt)

SELECT *

FROM temp;
Figure 7, Recursion example

Convert String to Rows

To convert a (potentially large) set of valuesin a string (character field) into separate rows
(e.g. one row per word), use recursion (see page 307).

14 Index of Concepts

DB2 UDB/V8.1 Cookbook ©

INPUT DATA Recursive SQL ANSWER

—E=—=============== —===========> —_==========

"Some silly text" TEXT LINE#
Some 1
silly 2
text 3

Figure 8, Convert string to rows
Be warned - in many cases, the code is not pretty.
Convert Rows to String

To convert a (potentially large) set of values that are in multiple rows into a single combined
field, use recursion (see page 308).

INPUT DATA Recursive SQL ANSWER
=== E=mmmm=m=====> Emmmmmm=m========
TEXT LINE# "Some silly text"
Some 1

silly 2

text 3

Figure 9, Convert rowsto string
Fetch First "n" Rows

To fetch the first "n" matching rows, use the FETCH FIRST notation (see page 24).

EMP_NM SELECT * ANSWER
to--mm - + FROM emp_nm =========
ID|NAME ORDER BY id DESC ID NAME
————————— FETCH FIRST 2 ROWS ONLY; - —--==-
10| Sanders 50 Hanes
20 |Pernal 20 Pernal

50 |Hanes
B +

Figure 10, Fetch first "n" rows example

Another way to do the same thing is to assign row numbers to the output, and then fetch those
rows where the row-number isless than "n" (see page 85).

Fetch Subsequent "n" Rows

To the fetch the "n" through "n + m" rows, first use the ROW_NUMBER function to assign
output numbers, then put the result in a nested-table-expression, and then fetch the rows with
desired numbers (see page 85).

Fetch Uncommitted Data

To retrieve data that may have been changed by another user, but which they have yet to
commit, use the WITH UR (Uncommitted Read) notation.

EMP_NM SELECT * ANSWER
+ommmm - + FROM emp_nm ==========
ID |NAME WHERE name like ’S%’ ID NAME
————————— WITH UR; - —------
10|Sanders 10 Sanders
20| Pernal

50 |Hanes

+o-mm - - +

Figure 11, Fetch WITH UR example

Using this option can result in one fetching data that is subsequently rolled back, and so was
never valid. Use with extreme care.

Quick Find 15

Graeme Birchall ©

Summarize Column Contents

Use a column function (see page 67) to summarize the contents of a column.

EMP_NM SELECT AVG (id) AS avg ANSWER

B + ,MAX (name) AS maxn =================
ID | NAME , COUNT (*) AS #rows AVG MAXN #ROWS
————————— FROM emp_nm; e
10|Sanders 26 Sanders 3
20| Pernal
50 |Hanes

+o-mm - - +

Figure 12, Column Functions example
Subtotals and Grand Totals

To obtain subtotals and grand-totals, use the ROLLUP or CUBE statements (see page 167).

SELECT job ANSWER
,dept =======================
,SUM(salary) AS sum sal JOB DEPT SUM SAL #EMP
, COUNT (*) AS #emps 0 mmmmm mmmm mmm—m——— oo
FROM staff Clerk 15 24766.70 2
WHERE dept < 30 Clerk 20 27757.35 2
AND salary < 20000 Clerk - 52524.05 4
AND job < 'S’ Mgr 10 19260.25 1
GROUP BY ROLLUP (job, dept) Mgr 20 18357.50 1
ORDER BY job Mgr - 37617.75 2
,dept; - - 90141.80 6

Figure 13, Subtotal and Grand-total example
Enforcing Data Integrity

When atableis created, various DB2 features can be used to ensure that the data entered in
the table is always correct:

e Uniqueness (of values) can be enforced by creating unique indexes.
e Check constraints can be defined to limit the values that a column can have.
e Default values (for a column) can be defined - to be used when no value is provided.

¢ Identity columns (see page 229), can be defined to automatically generate unigue nu-
meric values (e.g. invoice numbers) for all of the rowsin atable. Sequences can do the
same thing over multiple tables.

o Referential integrity rules can created to enforce key relationships between tables.

e Triggers can be defined to enforce more complex integrity rules, and also to do things
(e.g. populate an audit trail) whenever datais changed.

See the DB2 manuals for documentation about the above.
Hide Complex SQL

One can create aview (see page 18) to hide complex SQL that is run repetitively. Be warned
however that doing so can make it significantly harder to tune the SQL - because some of the
logic will be in the user code, and some in the view definition.

Summary Table

Some queries that use a GROUP BY can be made to run much faster by defining a summary
table (see page 217) that DB2 automatically maintains. Subsequently, when the user writes
the original GROUP BY against the source-data table, the optimizer substitutes with a much
simpler (and faster) query against the summary table.

16 Index of Concepts

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL

This chapter contains a basic introduction to DB2 UDB SQL. It also has numerous examples
illustrating how to use this language to answer particular business problems. However, it is
not meant to be a definitive guide to the language. Please refer to the relevant IBM manuals
for amore detailed description.

Syntax Diagram Conventions

This book uses railroad diagrams to describe the DB2 UDB SQL statements. The following
diagram shows the conventions used.

Start Continue
/ Default \

¢ FALL Ar an item
w SELECT t DISTINCT J t }

Resume / Repeat End \

F FROM % table name N
view name LWHERE expressionj_‘
> 4 { and / or

Mandatory Optional
Figure 14, Syntax Diagram Conventions
Rules
e Upper Casetext isa SQL keyword.
e talictextiseither aplaceholder, or explained elsewhere.
e Backward arrows enable one to repeat parts of the text.
e A branch line going above the main lineis the default.
e A branch line going below the main line is an optional item.
Statement Delimiter

DB2 SQL does not come with a designated statement delimiter (terminator), though a semi-
colon is often used. A semi-colon cannot be used when writing a compound SQL statement
(see page 57) because that character is used to terminate the various sub-components of the
statement.

In DB2BATCH one can set the statement delimiter using an intelligent comment:
--#SET DELIMITER !

SELECT name FROM staff WHERE id = 10!
--#SET DELIMITER ;
SELECT name FROM staff WHERE id = 20;

Figure 15, Set Delimiter example

Introduction to SQL 17

Graeme Birchall ©

SQL Components

DB2 Objects

DB2isarelationa database that supports a variety of object types. In this section we shall
overview those items which one can obtain data from using SQL.

Table

A tableisan organized set of columns and rows. The number, type, and relative position, of
the various columns in the table is recorded in the DB2 catalogue. The number of rowsin the
table will fluctuate as datais inserted and del eted.

The CREATE TABLE statement is used to define atable. The following example will define
the EMPLOY EE table, which isfound in the DB2 sample database.

CREATE TABLE employee

(empno CHARACTER (00006) NOT NULL
,firstnme VARCHAR (00012) NOT NULL
,midinit CHARACTER (00001) NOT NULL
,lastname VARCHAR (00015) NOT NULL

,workdept CHARACTER (00003)
, phoneno CHARACTER (00004)
,hiredate DATE

, job CHARACTER (00008)

,edlevel SMALLINT NOT NULL
, SEX CHARACTER (00001)

,birthdate DATE

,salary DECIMAL (00009,02)

,bonus DECIMAL (00009,02)

, comm DECIMAL (00009,02)

)
DATA CAPTURE NONE;

Figure 16, DB2 sample table - EMPLOYEE
View

A view is another way to look at the datain one or more tables (or other views). For example,
auser of the following view will only see those rows (and certain columns) in the EM-

PLOY EE table where the salary of a particular employee is greater than or equal to the aver-
age salary for their particular department.

CREATE VIEW employee view AS
SELECT a.empno, a.firstnme, a.salary, a.workdept
FROM employee a
WHERE a.salary »>=
(SELECT AVG(b.salary)
FROM employee b
WHERE a.workdept = b.workdept) ;

Figure 17, DB2 sample view - EMPLOYEE_VIEW
A view need not aways refer to an actual table. It may instead contain alist of values:

CREATE VIEW silly (cl, c2, c3)

AS VALUES (11, ‘AAA’, SMALLINT (22))
, (12, 'BBB’, SMALLINT (33))
, (13, rccc’, NULL) ;

Figure 18, Define a view using a VALUES clause

Selecting from the above view works the same as selecting from atable:

18 SQL Components

DB2 UDB/V8.1 Cookbook ©

SELECT cl, c2, c3 ANSWER
FROM silly ===========
ORDER BY cl aSC; Cl cC2 C3

Figure 19, SELECT from a view that has its own data

We can go one step further and define a view that begins with asingle value that is then ma-
nipulated using SQL to make many other values. For example, the following view, when se-
lected from, will return 10,000 rows. Note however that these rows are not stored anywhere in
the database - they are instead created on the fly when the view is queried.

CREATE VIEW test data AS

WITH templ (numl) AS

(VALUES (1)
UNION ALL

SELECT numl + 1
FROM templ

WHERE numl < 10000)
SELECT *

FROM templ;
Figure 20, Define a view that creates data on the fly

Alias

Andiasisan aternate name for atable or aview. Unlike aview, an alias can not contain any
processing logic. No authorization is required to use an alias other than that needed to access
to the underlying table or view.

CREATE ALIAS employee all FOR employee;
COMMIT;

CREATE ALIAS employee al2 fOR employee all;
COMMIT;

CREATE ALIAS employee al3 FOR employee al2;
COMMIT;
Figure 21, Define three aliases, the latter on the earlier

Neither aview, nor an dlias, can be linked in arecursive manner (e.g. V1 pointsto V2, which
points back to V1). Also, both views and aliases still exist after a source object (e.g. atable)
has been dropped. In such cases, aview, but not an alias, is marked invalid.

DB2 Data Types

DB2 comes with the following standard data types:

e SMALLINT, INT, and BIGINT (i.e. integer numbers).

e FLOAT, REAL, and DOUBLE (i.e. floating point numbers).

e DECIMAL and NUMERIC (i.e. decima numbers).

e CHAR, VARCHAR, and LONG VARCHAR (i.e. character values).

e GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC (i.e. graphical values).
e BLOB, CLOB, and DBCLOB (i.e. binary and character long object vaues).

e DATE, TIME, and TIMESTAMP (i.e. date/time values).

e DATALINK (i.e. link to external object).

Introduction to SQL 19

Graeme Birchall ©

Below is asimple table definition that uses the above data types:

CREATE TABLE sales record

(sales# INTEGER NOT NULL
GENERATED ALWAYS AS IDENTITY
(START WITH 1
, INCREMENT BY 1
,NO MAXVALUE

,NO CYCLE)
,sale_ts TIMESTAMP NOT NULL
,num_items SMALLINT NOT NULL
,payment_type CHAR (2) NOT NULL
,sale value DECIMAL(12,2) NOT NULL
,sales_tax DECIMAL(12,2)
,employee# INTEGER NOT NULL
, CONSTRAINT salesl CHECK (payment_type IN (’CS’,’CR’))
, CONSTRAINT sales2 CHECK (sale_value > 0)
, CONSTRAINT sales3 CHECK (num_items > 0)

, CONSTRAINT sales4 FOREIGN KEY (employee#)
REFERENCES staff (id)
ON DELETE RESTRICT

, PRIMARY KEY (sales#)) ;

Figure 22, Sample table definition

In the above table, we have listed the relevant columns, and added various checks to ensure
that the data is always correct. In particular, we have included the following:

e Thesaest#isautomatically generated (see page 229 for details). It is aso the primary key
of the table, and so must always be unique.

e The payment-type must be one of two possible values.
e Both the sales-value and the num-items must be greater than zero.

o Theemployee# must already exist in the staff table. Furthermore, once arow has been
inserted into thistable, any attempt to delete the related row from the staff table will fail.

Default Lengths
The following table has two columns:

CREATE TABLE default values
(cl CHAR NOT NULL
,dl DECIMAL NOT NULL) ;

Figure 23, Table with default column lengths

The length has not been provided for either of the above columns. In this case, DB2 defaults
to CHAR(1) for the first column and DECIMAL(5,0) for the second column.

Data Type Usage

In general, use the standard DB2 data types as follows:

e Always store monetary datain adecimal field.

e Store non-fractional numbersin one of the integer field types.
o Usefloating-point when absolute precision is not necessary.

A DB2 datatypeis not just a place to hold data. It also defines what rules are applied when
the datain manipulated. For example, storing monetary datain a DB2 floating-point field isa
no-no, in part because the data-type is not precise, but aso because a floating-point number is
not manipulated (e.g. during division) according to internationally accepted accounting rules.

20 SQL Components

DB2 UDB/V8.1 Cookbook ©

Distinct Types

A digtinct datatypeis afield type that is derived from one of the base DB2 field types. It is
used when one wants to prevent users from combining two separate columns that should
never be manipulated together (e.g. adding US dollars to Japanese Y en).

One creates a distinct (data) type using the following syntax:

V CREATE DISTINCT TYPE — type-name —source-type — WITH COMPARISONS »
Figure 24, Create Distinct Type Syntax

NOTE: The following source types do not support distinct types: LOB, LONG VARCHAR,
LONG VARGRAPHIC, and DATALINK.

The creation of adistinct type, under the covers, results in the creation two implied functions
that can be used to convert data to and from the source type and the distinct type. Support for
the basic comparison operators (=, <>, <, <=, >, and >=) is also provided.

Below isatypical create and drop statement:

CREATE DISTINCT TYPE JAP YEN AS DECIMAL(15,2) WITH COMPARISONS;
DROP DISTINCT TYPE JAP_ YEN;

Figure 25, Create and drop distinct type

NOTE: A distinct type cannot be dropped if it is currently being used in a table.
Usage Example
Imagine that we had the following customer table:

CREATE TABLE customer

(id INTEGER NOT NULL

, Ename VARCHAR (00010) NOT NULL WITH DEFAULT '’
, lname VARCHAR (00015) NOT NULL WITH DEFAULT '’
,date of birth DATE

,citizenship CHAR (03)

,usa_sales DECIMAL (9, 2)

,eur_sales DECIMAL(9, 2)

,sales office# SMALLINT

,last_updated TIMESTAMP

,PRIMARY KEY (id)) ;
Figure 26, Sample table, without distinct types

One problem with the above table is that the user can add the American and European sales
values, which if they are expressed in dollars and euros respectively, issilly:

SELECT id
,usa_sales + eur sales AS tot_ sales
FROM customer;

Figure 27, Slly query, but works

To prevent the above, we can create two distinct types:

CREATE DISTINCT TYPE USA DOLLARS AS DECIMAL(9,2) WITH COMPARISONS;
CREATE DISTINCT TYPE EUR DOLLARS AS DECIMAL(9,2) WITH COMPARISONS;

Figure 28, Create Distinct Type examples

Now we can define the customer table thus:

Introduction to SQL 21

Graeme Birchall ©

CREATE TABLE customer

(id INTEGER NOT NULL

, fname VARCHAR (00010) NOT NULL WITH DEFAULT '’
, Iname VARCHAR (00015) NOT NULL WITH DEFAULT '’
,date_of birth DATE

,citizenship CHAR (03)

,usa_sales USA_DOLLARS

,eur sales EUR DOLLARS

,sales_office# SMALLINT

,last updated TIMESTAMP

,PRIMARY KEY (id)) ;
Figure 29, Sample table, with distinct types

Now, when we attempt to run the following, it will fail:
SELECT id

,usa_sales + eur sales AS tot_ sales

FROM customer;

Figure 30, Slly query, now fails

The creation of adistinct type, under the covers, results in the creation two implied functions
that can be used to convert data to and from the source type and the distinct type. In the next
example, the two monetary values are converted to their common decimal source type, and
then added together:

SELECT id

,DECIMAL (usa_sales) +
DECIMAL (eur_sales) AS tot_sales

FROM customer;

Figure 31, Slly query, works again

SELECT Statement

A SELECT statement is used to query the database. It has the following components, not all
of which need be used in any particular query:

SELECT clause. One of these isrequired, and it must return at least one item, beit a col-
umn, aliteral, the result of a function, or something else. One must also access at least
one table, be that atrue table, atemporary table, aview, or an dias.

WITH clause. This clauseis optional. Use this phrase to include independent SELECT
statements that are subsequently accessed in afina SELECT (see page 246).

ORDER BY clause. Optionaly, order the final output (see page 159).

FETCH FIRST clause. Optionally, stop the query after "n" rows (see page 24). If an op-
timize-for value is also provided, both values are used independently by the optimizer.

READ-ONLY clause. Optionally, state that the query is read-only. Some queries are in-
herently read-only, in which case this option has no effect.

FOR UPDATE clause. Optionally, state that the query will be used to update certain col-
umns that are returned during fetch processing.

OPTIMIZE FOR n ROWS clause. Optionally, tell the optimizer to tune the query assum-
ing that not all of the matching rows will be retrieved. If afirst-fetch value is aso pro-
vided, both values are used independently by the optimizer.

Refer to the IBM manuals for a complete description of all of the above. Some of the more
interesting options are described below.

22

SQL Components

DB2 UDB/V8.1 Cookbook ©

SELECT statement 4}

T
WITH L common table expression J;

} L ORDER BY clause J L FIRST FETCH clause J k READ-ONLY clause ﬂ
FOR UPDATE clause

X w

} LOPTIMIZE FOR clauseJ

Figure 32, SELECT Statement Syntax (general)
SELECT Clause

Every query must have at least one SELECT statement, and it must return at |east one item,
and access at |east one object.

w SELECT %én item }

F FROM table name |
view name :‘ correlation name J
alias name AS
(full select)

} L WHERE ex i j—‘ N
pression
t and /or

Figure 33, SELECT Statement Syntax
SELECT Items

Column: A column in one of the table being selected from.

Literal: A literal value (e.g. "ABC"). Usethe AS expression to name the literal.
Specia Register: A special register (e.g. CURRENT TIME).

Expression: An expression result (e.g. MAX(COL1*10)).

Full Select: An embedded SELECT statement that returns a single row.

FROM Objects

Table: Either a permanent or temporary DB2 table.

View: A standard DB2 view.

Alias: A DB2 dias that pointsto atable, view, or another dlias.

Full Select: An embedded SELECT statement that returns a set of rows.

Sample SQL
SELECT deptno ANSWER
,admrdept ===================
,"ABC’ AS abc DEPTNO ADMRDEPT ABC
FROM department ~ —--—m— —mm—— - -
WHERE deptname LIKE ’'%ING%’ BO1 AQ0 ABC
ORDER BY 1; D11 D01 ABC

Figure 34, Sample SELECT statement

To select al of the columnsin atable (or tables) one can use the "*" notation:

Introduction to SQL

23

Graeme Birchall ©

SELECT * ANSWER (part of)
FROM department ================
WHERE deptname LIKE '%ING%’ DEPTNO etc...
ORDER BY 1; mmm e e —m e >>>
BO1 PLANNING
D11 MANUFACTU

Figure 35, Use "*" to select all columnsin table

To select both individual columns, and al of the columns (using the "*" notation), in asingle
SELECT statement, one can still usethe "*", but it must fully-qualified using either the object
name, or a correlation name;

SELECT deptno ANSWER (part of)
,department. * =======================
FROM department DEPTNO DEPTNO etc...
WHERE deptname LIKE ’'%ING%’ = —==---- —---—m —————- >>>
ORDER BY 1; BO1 BO1 PLANNING
D11 D11 MANUFACTU

Figure 36, Select an individual column, and all columns
Use the following notation to select all thefieldsin atable twice:

SELECT department. * ANSWER (part of)
,department. * ================
FROM department DEPTNO etc...
WHERE deptname LIKE ’S%NING%’ —----m —————- >>>
ORDER BY 1; BO1 PLANNING

Figure 37, Select all columns twice

FETCH FIRST Clause

The fetch first clause limits the cursor to retrieving "n" rows. If the clause is specified and no
number is provided, the query will stop after the first fetch.

1

F FETCH FIRST ﬁ ROW ONLY
L integer — L ROWSJ }

Figure 38, Fetch First clause Syntax

If this clause is used, and there is no ORDER BY,, then the query will simply return arandom
set of matching rows, where the randomness is afunction of the access path used and/or the
physical location of the rowsin the table:

SELECT years ANSWER
,hame =====================
,id YEARS NAME ID
FROM staft mmmmme e e e -
FETCH FIRST 3 ROWS ONLY; 7 Sanders 10
8 Pernal 20
5 Marenghi 30

Figure 39, FETCH FIRST without ORDER BY, gets random rows

WARNING: Using the FETCH FIRST clause to get the first "n" rows can sometimes return
an answer that is not what the user really intended. See below for details.
If an ORDER BY is provided, then the FETCH FIRST clause can be used to stop the query
after a certain number of what are, perhaps, the most desirable rows have been returned.
However, the phrase should only be used in this manner when the related ORDER BY
uniquely identifies each row returned.

24 SQL Components

DB2 UDB/V8.1 Cookbook ©

To illustrate what can go wrong, imagine that we wanted to query the STAFF tablein order to
get the names of those three employees that have worked for the firm the longest - in order to
give them alittle reward (or possibly to fire them). The following query could be run:;

SELECT years ANSWER
,name ================S===S
,id YEARS NAME ID
FROM statf mmmmmm mmmmm e oo
WHERE years IS NOT NULL 13 Graham 310
ORDER BY years DESC 12 Jones 260
FETCH FIRST 3 ROWS ONLY; 10 Hanes 50

Figure 40, FETCH FIRST with ORDER BY, gets wrong answer

The above query answers the question correctly, but the question was wrong, and so the an-
swer iswrong. The problem is that there are two employees that have worked for the firm for
ten years, but only one of them shows, and the one that does show was picked at random by
the query processor. Thisis almost certainly not what the business user intended.

The next query is similar to the previous, but now the ORDER ID uniquely identifies each
row returned (presumably as per the end-user’s instructions):

SELECT years ANSWER
,hame —===========—=——=—=—=====
,id YEARS NAME ID
FROM staft mmmmme e e e -
WHERE years IS NOT NULL 13 Graham 310
ORDER BY years DESC 12 Jones 260
,id DESC 10 Quill 290

FETCH FIRST 3 ROWS ONLY;
Figure 41, FETCH FIRST with ORDER BY, getsright answer

WARNING: Getting the first "n" rows from a query is actually quite a complicated prob-
lem. Refer to page 87 for a more complete discussion.

Correlation Name

The correlation name is defined in the FROM clause and relates to the preceding object name.
In some cases, it is used to provide a short form of the related object name. In other situations,
itisrequired in order to uniquely identify logical tables when asingle physical tableisre-
ferred to twice in the same query. Some sample SQL follows:

SELECT a.empno ANSWER
,a.lastname =================
FROM employee a EMPNO LASTNAME
, (SELECT MAX (empno)AS empno == ==== ——————————
FROM employee) AS b 000340 GOUNOT
WHERE a.empno = b.empno;
Figure 42, Correlation Name usage example
SELECT a.empno ANSWER
,a.lastname ======================
,b.deptno AS dept EMPNO LASTNAME DEPT
FROM employee a e e — e
,department b 000090 HENDERSON E11
WHERE a.workdept = b.deptno 000280 SCHNEIDER E11
AND a.job <> 'SALESREP’ 000290 PARKER Ell
AND b.deptname = ’‘OPERATIONS’ 000300 SMITH E11l
AND a.sex IN (‘M’','F") 000310 SETRIGHT Ell
AND b.location IS NULL
ORDER BY 1;

Figure 43, Correlation name usage example

Introduction to SQL 25

Graeme Birchall ©

Renaming Fields

The AS phrase can be used in a SELECT list to give afield adifferent name. If the new name
isaninvalid field name (e.g. contains embedded blanks), then place the name in quotes:

SELECT empno AS e _num ANSWER
,midinit AS "m int" =============z======
,phoneno AS "..." E_NUM M INT
FROM employee —----= —---- ----
WHERE empno < 000030’ 000010 I 3978
ORDER BY 1; 000020 L 3476

Figure 44, Renaming fields using AS

The new field name must not be qualified (e.g. A.C1), but need not be unique. Subsequent
usage of the new nameislimited asfollows:

e |t canbeusedinan order by clause.
e |t cannot be used in other part of the select (where-clause, group-by, or having).
e |t cannot be used in an update clause.

e [tisknown outside of the full-select of nested table expressions, common table expres-
sions, and in aview definition.

CREATE view emp2 AS

SELECT empno AS e_num
,midinit AS "m int"
,phoneno AS "..."

FROM employee; ANSWER

SELECT * E_NUM M INT

FROM emp2 . mmmm e — e -—--
WHERE "..." = ’3978'; 000010 T 3978

Figure 45, View field names defined using AS

Working with Nulls

In SQL something can be true, false, or null. Thisthree-way logic has to always be consid-
ered when accessing data. To illustrate, if we first select all the rowsin the STAFF table
where the SALARY is< $10,000, then al the rows where the SALARY is>= $10,000, we
have not necessarily found all the rows in the table because we have yet to select those rows
where the SALARY isnull.

The presence of null valuesin atable can also impact the various column functions. For ex-
ample, the AV G function ignores null values when calculating the average of a set of rows.

This means that a user-calcul ated average may give a different result from a DB2 calculated
equivalent:

SELECT AVG (comm) AS al ANSWER

,SUM (comm) / COUNT (*) AS a2 ===============
FROM staff Al A2
WHERE id < 100; . memmmee —mmme

796.025 530.68
Figure 46, AVG of data containing null values

Null values can also pop in columns that are defined as NOT NULL. This happens when a
field is processed using a column function and there are no rows that match the search crite-
ra

26 SQL Components

DB2 UDB/V8.1 Cookbook ©

SELECT COUNT (*) AS num ANSWER
,MAX (lastname) AS max ========

FROM employee NUM MAX

WHERE firstnme = ’'FRED’; —_——— ---

O -
Figure 47, Getting a NULL value from a field defined NOT NULL

Why Nulls Exist

Null values can represent two kinds of data. In first case, the value is unknown (e.g. we do not
know the name of the person’s spouse). Alternatively, the value is not relevant to the situation
(e.g. the person does not have a spouse).

Many people prefer not to have to bother with nulls, so they use instead a specia value when
necessary (e.g. an unknown employee name is blank). Thistrick works OK with character
data, but it can lead to problems when used on numeric values (e.g. an unknown salary is set
to zero).

Locating Null Values

One can not use an equal predicate to locate those values that are null because anull value
does not actually equal anything, not even null, it issimply null. The ISNULL or ISNOT
NULL phrases are used instead. The following example gets the average commission of only
those rows that are not null. Note that the second result differs from the first due to rounding
loss.

SELECT AVG (comm) AS al ANSWER
,SUM (comm) / COUNT (*) AS a2 ===============
FROM staff Al A2
WHERE id < 100 e e e
AND comm IS NOT NULL; 796.025 796.02

Figure 48, AVG of those rows that are not null

Quotes and Double-quotes

To writeastring, put it in quotes. |If the string contains quotes, each quote is represented by a
pair of quotes:

SELECT " JOHN' AS J1
, "JOHN" "8’ AS J2 ANSWER
, ' ""JOHN’""S" "’ AS J3 =============================
, " "JOHN""g"’ AS J4 Jl J2 J3 J4
FROM =] o= 5 o o
WHERE id = 10; JOHN JOHN’S ’'JOHN’S’ "JOHN’S"

Figure 49, Quote usage

Double quotes can be used to give a name to a output field that would otherwise not be valid.
To put adouble quote in the name, use apair of quotes:

SELECT id AS "USER ID" ANSWER
,dept AS "D#" So—mmoomoomooooooooooooooooooo
,years AS "#Y" USER ID D# #Y 'TXT' "quote" fld
, "ABC’ AS "ITXT/ " e m et e e e
e AS ""rguoten" f£14" 10 20 7 ABC "

FROM staff s 20 20 8 ABC "

WHERE id < 40 30 38 5 ABC "

ORDER BY "USER ID";
Figure 50, Double-quote usage

NOTE: Nonstandard column names (i.e. with double quotes) cannot be used in tables, but
they are permitted in view definitions.

Introduction to SQL 27

Graeme Birchall ©

SQL Predicates

A predicate is used in either the WHERE or HAVING clauses of a SQL statement. It speci-
fies acondition that true, false, or unknown about arow or a group.

Basic Predicate

A basic predicate compares two vaues. If either value is null, the result is unknown. Other-
wisetheresult is either true or false.

expresion = expression }

> or] >

Figure 51, Basic Predicate syntax

SELECT id, job, dept ANSWER

FROM staff ===============

WHERE job = 'Mgr’ ID JOB DEPT
AND NOT job <> ’'Mgr’ T
AND NOT job = ’Sales’ 10 Mgr 20
AND id < 100 30 Mgr 38
AND id >= 0 50 Mgr 15
AND id <= 150 140 Mgr 51
AND NOT dept = 50

ORDER BY 1id;
Figure 52, Basic Predicate examples

Quantified Predicate

A quantified predicate compares one or more values with a collection of values.

expression = SOME —— (fullselect)
> o T -

<> ANY
< ALL
>

<=

o=

— (£expression j—) —=

SOME
[Some T
Figure 53, Quantified Predicate syntax,1 of 2
SELECT id, job ANSWER
FROM staff ========
WHERE job = ANY (SELECT job FROM staff) ID JOB
AND id <= ALL (SELECT id FROM staff) —=- ----
ORDER BY id; 10 Mgr
Figure 54, Quantified Predicate example, two single-value sub-queries
SELECT id, dept, job ANSWER
FROM staff ==============
WHERE (id,dept) = ANY ID DEPT JOB
(SELECT dept, id e emee oo
FROM staff) 20 20 Sales
ORDER BY 1;

Figure 55, Quantified Predicate example, multi-value sub-query

See the sub-query chapter on page 199 for more data on this predicate type.

28 SQL Predicates

DB2 UDB/V8.1 Cookbook ©

A variation of this predicate type can be used to compare sets of values. Everything on both
sides must equal in order for the row to match:

} . not |

(rexpression l) =

Figure 56, Quantified Predicate syntax, 2 of 2

SELECT id, dept, job

FROM staff
WHERE (id, dept) = (30,28)
OR (id,years) = (90, 7)
OR (dept,job) = (38, 'Mgr’)

ORDER BY 1;

Figure 57, Quantified Predicate example, multi-value check

Below is the same query written the old fashioned way:

SELECT id, dept, job

FROM staff

WHERE (id = 30 AND dept =
OR (id = 90 AND vyears =
OR (dept = 38 AND job =

ORDER BY 1;

28)
7)
’Mgr’)

Figure 58, Same query as prior, using individual predicates

BETWEEN Predicate

The BETWEEN predicate compares a value within arange of values.

(rexpression j—) ‘}

Fﬁ exprsn. BETWEEN — low val.— AND—— high val. 4
NOT [Not |

Figure 59, BETWEEN Predicate syntax

The between check always assumes that the first value in the expression is the low value and
the second value is the high value. For example, BETWEEN 10 AND 12 may find data, but

BETWEEN 12 AND 10 never will.

SELECT id, job

FROM staff

WHERE id BETWEEN 10 AND 30
AND id NOT BETWEEN 30 AND 10
AND NOT id NOT BETWEEN 10 AND 30

ORDER BY id;

Figure 60, BETWEEN Predicate examples

EXISTS Predicate

An EXISTS predicate tests for the existence of matching rows.
EXISTS — (fullselect)

> or
Figure 61, EXISTS Predicate syntax

Introduction to SQL

10 Mgr
20 Sales
30 Mgr

29

Graeme Birchall ©

SELECT id, job ANSWER
FROM staff a =========
WHERE EXISTS ID JOB
(SELECT * e e
FROM staff b 10 Mgr
WHERE b.id = a.id 20 Sales
AND Db.id < 50) 30 Mgr
ORDER BY 1id; 40 Sales

Figure 62, EXISTS Predicate example
NOTE: See the sub-query chapter on page 199 for more data on this predicate type.

IN Predicate

The IN predicate compares one or more values with alist of values.

exprsn. IN (fullselect)
Cvor >

(Léxpression L) —

expression

IN (fullselect)
. not |

NOT

(i expression j—)

Figure 63, IN Predicate syntax

Thelist of values being compared in the IN statement can either be a set of in-line expres-
sions (e.g. ID in (10,20,30)), or a set rows returned from a sub-query. Either way, DB2 simply
goes through the list until it finds a match.

SELECT id, job ANSWER
FROM staff a =========
WHERE id IN (10,20,30) ID JOB
AND id IN (SELECT id aee emmem
FROM staff) 10 Mgr
AND id NOT IN 99 20 Sales
ORDER BY id; 30 Mgr

Figure 64, IN Predicate examples, single values

The IN statement can also be used to compare multiple fields against a set of rows returned
from a sub-query. A match exists when all fields equal. This type of statement is especially
useful when doing a search against a table with a multi-columns key.

WARNING: Be careful when using the NOT IN expression against a sub-query result. If any
one row in the sub-query returns null, the result will be no match. See page 199 for more de-
tails.

SELECT empno, lastname ANSWER

FROM employee ===============

WHERE (empno, ‘AD3113’) IN EMPNO LASTNAME
(SELECT empno, projno ————-— ——— -
FROM emp_act 000260 JOHNSON
WHERE emptime > 0.5) 000270 PEREZ

ORDER BY 1;
Figure 65, IN Predicate example, multi-value

NOTE: See the sub-query chapter on page 199 for more data on this statement type.

LIKE Predicate
The LIKE predicate does partial checks on character strings.

30 SQL Predicates

DB2 UDB/V8.1 Cookbook ©

Fﬁ exprsn. LIKE — pattern
NOT E NOT j L ESCAPE — patternJ

Figure 66, LIKE Predicate syntax

The percent and underscore characters have special meanings. The first means skip a string of
any length (including zero) and the second means skip one byte. For example:

e LIKE'AB_D%' Finds’ABCD’ and ’ABCDE, but not 'ABD’, nor 'ABCCD’.

e LIKE” X’ Finds X X" and 'DX’, but not X, nor 'ABX’, nor 'AXB'.
o LIKE %X’ Finds’AX’, X', and 'AAX’, but not XA
SELECT id, name ANSWER

FROM staff ==============
WHERE name LIKE ’'S%n’ ID NAME

OR name LIKE ’'_a a%’

OR name LIKE '%r_%a’ 130 Yamaguchi
ORDER BY id; 200 Scoutten

Figure 67, LIKE Predicate examples

0

o°

o°

The ESCAPE Phrase

The escape character in a LIKE statement enables one to check for percent signs and/or un-
derscores in the search string. When used, it precedes the '%' or ’_’ in the search string indicat-
ing that it is the actual value and not the special character which isto be checked for.

When processing the LIKE pattern, DB2 works thus: Any pair of escape charactersis treated
astheliteral value (e.g. "++" meansthe string "+"). Any single occurrence of an escape char-
acter followed by either a"%" or a"_" meansthelitera "%" or (e.g. "+%" meansthe

string "%"). Any other "%" or " _" isused asin anorma LIKE pattern.

LIKE STATEMENT TEXT WHAT VALUES MATCH
LIKE 'AB%’ Finds AB, any string
LIKE ’'AB%’ ESCAPE '+’ Finds AB, any string
LIKE ’'AB+%’ ESCAPE '+’ Finds AB%
LIKE ’'AB++' ESCAPE '+’ Finds AB+
LIKE 'AB+%%’ ESCAPE '+’ Finds AB%, any string
LIKE 'AB++%’ ESCAPE '+’ Finds AB+, any string
LIKE ’'AB+++%' ESCAPE '+’ Finds AB+%
LIKE 'AB+++%%’ ESCAPE '+’ Finds AB+%, any string
LIKE 'AB+%+%%’ ESCAPE '+’ Finds AB%%, any string
LIKE 'AB++++' ESCAPE '+’ Finds AB++
LIKE 'AB+++++%’ ESCAPE '+’ Finds AB++%
LIKE 'AB++++%’ ESCAPE '+’ Finds AB++, any string
LIKE 'AB+%++%’ ESCAPE '+’ Finds AB%+, any string
Figure 68, LIKE and ESCAPE examples
Now for sample SQL.:
SELECT id ANSWER
FROM staff ======
WHERE i1id = 10 ID

AND 'ABC’ LIKE 'AB%’ ---
AND 'A%C’ LIKE 'A/%C’ ESCAPE
AND ‘A C’ LIKE 'A_C’ ESCAPE
AND 'A $’' LIKE 'A$ S’ ESCAPE
Figure 69, LIKE and ESCAPE examples

RN

Introduction to SQL 31

Graeme Birchall ©

NULL Predicate

The NULL predicate checks for null values. The result of this predicate cannot be unknown.
If the value of the expression is null, the result istrue. If the value of the expression is not
null, theresult isfalse.

Fﬁ exprsn. IS NULL
NOT . not }

Figure 70, NULL Predicate syntax

SELECT id, comm ANSWER
FROM staff =========
WHERE id < 100 ID COMM
AND id IS NOT NULL -—- -————
AND comm IS NULL 10 -
AND NOT comm IS NOT NULL 30 -
ORDER BY id; 50 -

Figure 71, NULL predicate examples

NOTE: Use the COALESCE function to convert null values into something else.

Precedence Rules

Expressions within parentheses are donefirst, then prefix operators (e.g. -1), then multiplica-
tion and division, then addition and subtraction. When two operations of equal precedence are
together (e.g. 1* 5/ 4) they are done from |eft to right.

Example: 555 + -22 /(12 - 3) * 66 ANSWER
5th 2nd 3rd lst 4th

Figure 72, Precedence rules example

Be aware that the result that you get depends very much on whether you are doing integer or
decimal arithmetic. Below is the above done using integer numbers:

SELECT (12 - 3) AS intl
, -22 / (12 - 3) AS int2
, -22 / (12 - 3) * 66 AS int3
,555 + -22 / (12 - 3) * 66 AS int4
FROM sysibm.sysdummyl; ANSWER

9 -2 -132 423
Figure 73, Precedence rules, integer example
NOTE: DB2 truncates, not rounds, when doing integer arithmetic.
Here is the same done using decimal numbers:
SELECT (12.0 - 3) AS decl
, -22 / (12.0 - 3) AS dec2
, -22 / (12.0 - 3) * 66 AS dec3
,555 + -22 / (12.0 - 3) * 66 AS dec4
FROM sysibm. sysdummyl; ANSWER

9.0 -2.4 -161.3 393.6
Figure 74, Precedence rules, decimal example

AND operations are done before OR operations. This means that one side of an OR isfully
processed before the other side is begun. To illustrate:

32 SQL Predicates

DB2 UDB/V8.1 Cookbook ©

SELECT * ANSWER>> COL1 COL2 TABLE1
FROM tablez a-e- - bmmm e +
WHERE coll = 'C’ A AA CcoLl|cor2
AND coll >= 'A’ B BB @ |----|----
OR col2 >= 'AA’ C ccC A AL
ORDER BY coll; B BB
C cc
SELECT * ANSWER>> COL1 COL2 tmmmm - +
FROM tablel oo -
WHERE (coll = 'C’ A AA
AND coll >= 'A") B BB
OR col2 >= 'AA’ C ccC
ORDER BY coll;
SELECT * ANSWER>> COL1 COL2
FROM tablel oo -
WHERE coll = 'C’ c ce
AND (coll >= 'A’
OR col2 >= 'AA')

ORDER BY coll;

Figure 75, Use of OR and parenthesis

WARNING: The omission of necessary parenthesis surrounding OR operators is a very
common mistake. The result is usually the wrong answer. One symptom of this problem is
that many more rows are returned (or updated) than anticipated.

CAST Expression

The CAST is expression is used to convert one data type to another. It is similar to the various
field-type functions (e.g. CHAR, SMALLINT) except that it can also handle null values and
host-variable parameter markers.

F CAST (
=

Figure 76, CAST expression syntax

expression

— — AS — data-type —) 4}
NULL _

parameter maker

Input vs. Output Rules

o EXPRESSION: If theinput is neither null, nor a parameter marker, the input data-typeis
converted to the output data-type. Truncation and/or padding with blanks occur asre-
quired. An error is generated if the conversionisillegal.

e NULL: If theinput isnull, the output is anull value of the specified type.

e PARAMETER MAKER: Thisoptionisonly used in programs and need not concern us
here. See the DB2 SQL Reference for details.

Examples

Use the CAST expression to convert the SALARY field from decimal to integer:

SELECT id ANSWER
,salary =================
,CAST (salary AS INTEGER) AS sal2 ID SALARY SAL2
FROM staff e mmmmmmm e ame-
WHERE id < 30 10 18357.50 18357

ORDER BY id;

20 18171.25 18171

Figure 77, Use CAST expression to convert Decimal to Integer

Introduction to SQL

33

Graeme Birchall ©

Use the CAST expression to truncate the JOB field. A warning message will be generated for
the second line of output because non-blank truncation is being done.

SELECT id ANSWER
, job =============
,CAST (job AS CHAR(3)) AS job2 ID JOB JOB2
FROM staftt e aeeem o
WHERE id < 30 10 Mgr Mgr
ORDER BY id; 20 Sales Sal

Figure 78, Use CAST expression to truncate Char field

Use the CAST expression to make a derived field called JUNK of type SMALLINT where all
of the values are null.

SELECT id ANSWER
,CAST (NULL AS SMALLINT) AS junk =======
FROM staff ID JUNK
WHERE id < 30 e e
ORDER BY id; 10 -
20 -

Figure 79, Use CAST expression to define SMALLINT field with null values
The CAST expression can also be used in ajoin, where the field types being matched differ:

SELECT stf.id ANSWER
, emp . empno =========
FROM staff stf ID EMPNO
LEFT OUTER JOIN e mmmm e
employee emp 10 -
ON stf.id = CAST (emp.empno AS SMALLINT) 20 000020
AND emp.job = ’'MANAGER’ 30 000030
WHERE stf.id < 60 40 -
ORDER BY stf.id; 50 000050

Figure 80, CAST expressionin join

Of course, the same join can be written using the raw function:

SELECT stf.id ANSWER
, emp . empno =========
FROM staff stf ID EMPNO
LEFT OUTER JOIN = e
employee emp 10 -
ON stf.id = SMALLINT (emp.empno) 20 000020
AND emp.job = ’‘MANAGER’ 30 000030
WHERE stf.id < 60 40 -
ORDER BY stf.id; 50 000050

Figure 81, Function usageinjoin

VALUES Clause

The VALUES clause is used to define a set of rows and columns with explicit values. The
clause is commonly used in temporary tables, but can also be used in view definitions. Once
defined in atable or view, the output of the VALUES clause can be grouped by, joined to,
and otherwise used asiif it is an ordinary table - except that it can not be updated.

34 VALUES Clause

DB2 UDB/V8.1 Cookbook ©

i ;expression ‘
' 4
L (+ expression ‘)

L NULL
Figure 82, VALUES expression syntax

V VALUES —|

Each column defined is separated from the next using a comma. Multiple rows (which may
also contain multiple columns) are separated from each other using parenthesis and acomma.
When multiple rows are specified, all must share acommon data type. Some examples fol-
low:

VALUES 6 <= 1 row, 1 column
VALUES (6) <= 1 row, 1 column
VALUES 6, 7, 8 <= 1 row, 3 columns
VALUES (6), (7), (8) <= 3 rows, 1 column
VALUES (6,66), (7,77), (8,NULL) <= 3 rows, 2 columns
Figure 83, VALUES usage examples
Sample SQL

The next statement shall define atemporary table containing two columns and three rows.
The first column will default to type integer and the second to type varchar.

WITH templ (coll, col2) AS ANSWER
(VALUES (0, 'AA’) ———=—====
, 1, 'BB") COL1 COL2
,(2, NULL) e o
) 0 AA
SELECT * 1 BB
FROM templ; 2 -

Figure 84, Use VALUES o define a temporary table (1 of 4)

If we wish to explicitly control the output field types we can define them using the appropri-
ate function. This trick does not work if even a single valuein the target column is null.

WITH templ (coll, col2) AS ANSWER
(VALUES (DECIMAL (O ,3,1), 'AA’) S
, (DECIMAL(1 ,3,1), ’'BB’) COL1 COL2
, (DECIMAL(2 ,3,1), NULL) m—-- —---
) 0.0 AA
SELECT * 1.0 BB
FROM templ; 2.0 -

Figure 85, Use VALUES o define a temporary table (2 of 4)

If any one of the values in the column that we wish to explicitly define has anull value, we
have to use the CAST expression to set the output field type:

WITH templ (coll, col2) AS ANSWER
(VALUES (0, CAST('AA’ AS CHAR(1))) S —
,(1, CAST('BB’ AS CHAR(1l))) COL1 COL2
, 2, CAST(NULL AS CHAR(1))) === ———-
) 0 A
SELECT * 1 B
FROM templ; 2 -

Figure 86, Use VALUES o define a temporary table (3 of 4)

Alternatively, we can set the output type for al of the not-null rowsin the column. DB2 will
then use these rows as a guide for defining the whole column:

Introduction to SQL 35

Graeme Birchall ©

WITH templ (coll, col2) AS ANSWER
(VALUES (0, CHAR('AA’,1)) =========
,(1, CHAR('BB’,1)) COL1 COL2
, (2, NULL) mmee —me e
) 0 A
SELECT * 1B
FROM templ; 2 -

Figure 87, Use VALUES o define a temporary table (4 of 4)
More Sample SQL

Temporary tables, or (permanent) views, defined using the VALUES expression can be used
much like a DB2 table. They can be joined, unioned, and selected from. They can not, how-
ever, be updated, or have indexes defined on them. Temporary tables can not be used in a
sub-query.

WITH templ (coll, col2, col3) AS ANSWER

(VALUES (0, 'AA’, 0.00) —=========
,(1, 'BB’, 1.11) COL1B COLX
,(2, 'CC', 2.22) . mmmes —m e

) 0 0.00

,temp2 (collb, colx) AS 1 2.11

(SELECT coll 2 4.22

,coll + col3
FROM templ

)
SELECT *
FROM temp2;

Figure 88, Derive one temporary table from another

CREATE VIEW silly (cl, c2, c3)

AS VALUES (11, ‘AAA’, SMALLINT (22))
, (12, 'BBB’, SMALLINT (33))
, (13, rccc’, NULL) ;

COMMIT;
Figure 89, Define a view using a VALUES clause

WITH templ (coll) AS ANSWER
(VALUES 0 S
UNION ALL COL1
SELECT coll + 1 -—---
FROM templ 0
WHERE coll + 1 < 100 1

) 2
SELECT * 3
FROM templ; etc

Figure 90, Use VALUES defined data to seed a recursive SQL statement

All of the above examples have matched a VALUES statement up with a prior WITH expres-
sion, so as to name the generated columns. One doesn't have to use the latter, but if you dont,
you get atable with unnamed columns, which is pretty useless:

SELECT * ANSWER
FROM (VALUES (123, 'ABC') ======
, (234 ,'DEF’) —ee ——n
JAS ttt 234 DEF
ORDER BY 1 DESC; 123 ABC

Figure 91, Generate table with unnamed columns

36 VALUES Clause

DB2 UDB/V8.1 Cookbook ©

CASE Expression

WARNING: The sequence of the CA SE conditions can affect the answer. The first WHEN
check that matches is the one used.

CASE expressions enable one to do if-then-else type processing inside of SQL statements.
There are two general flavors of the expression. In the first kind, each WHEN statement does
its own independent checking. In the second kind, al of the WHEN conditions are used to do
"equal” checks against acommon reference expression. With both flavors, the first WHEN
that matches is the one chosen.

i WHEN —— search-condition —— THEN result j—L
—[NULL

V CASE — | 4

|__expression iWHEN — expression—— THEN —[result j—L
NULL

} [ELSE NULL “ END }

L ELSE — result J
Figure 92, CASE expression syntax

Notes & Restrictions
e |f morethan one WHEN condition is true, the first one processed that matchesis used.

e If no WHEN matches, the value in the EL SE clause applies. If no WHEN matches and
thereisno ELSE clause, theresult isSNULL.

e There must be at least one non-null result in a CASE statement. Failing that, one of the
NULL results must be inside of a CAST expression.

e All result values must be of the same type.

¢ Functionsthat have an external action (e.g. RAND) can not be used in the expression part
of a CASE statement.

CASE Flavours

The following CASE is of the kind where each WHEN does an equal check against a com-
mon expression - in this example, the current value of SEX.

SELECT Lastname ANSWER
, 8ex AS sx ====================
,CASE sex LASTNAME SX SEXX
WHEN ’'F’ THEN ’'FEMALE’ = @ m-mmmmmmmm == —mmmm
WHEN 'M’ THEN 'MALE’ JEFFERSON M MALE
ELSE NULL JOHNSON F FEMALE
END AS sexx JONES M MALE
FROM employee
WHERE lastname LIKE 'J%’
ORDER BY 1;

Figure 93, Use CASE (type 1) to expand a value

The next statement is logically the same as the above, but it uses the aternative form of the
CASE notation in order to achieve the same result. In this example, the equal predicateis ex-
plicitly stated rather than implied.

Introduction to SQL 37

Graeme Birchall ©

SELECT lastname ANSWER
, sex AS sx ====================
, CASE LASTNAME SX SEXX
WHEN sex = 'F’ THEN ’'FEMALE’ - --------- - ——----
WHEN sex = 'M’ THEN ’'MALE’ JEFFERSON M MALE
ELSE NULL JOHNSON F FEMALE
END AS sexx JONES M MALE
FROM employee
WHERE lastname LIKE 'J%’
ORDER BY 1;

Figure 94, Use CASE (type 2) to expand a value
More Sample SQL

SELECT lastname ANSWER
,midinit AS mi ===================
, Sex AS sx LASTNAME MI SX MX
,CASE e - - --
WHEN midinit > SEX JEFFERSON J M M
THEN midinit JOHNSON P F P
ELSE sex JONES T M T
END AS mx
FROM employee
WHERE lastname LIKE 'J%’

ORDER BY 1;
Figure 95, Use CASE to display the higher of two values

SELECT COUNT (*) AS tot ANSWER
,SUM (CASE sex WHEN 'F’ THEN 1 ELSE O END) AS #f =========
,SUM (CASE sex WHEN ‘M’ THEN 1 ELSE 0 END) AS #m TOT #F #M

FROM employee ——— == -

WHERE lastname LIKE 'J%’; 3 1 2

Figure 96, Use CASE to get multiple countsin one pass

SELECT lastname ANSWER
, sex ==============
FROM employee LASTNAME SEX
WHERE lastname LIKE 'Jd%" —e—mm————- ---
AND CASE sex JEFFERSON M
WHEN 'F’ THEN '’ JOHNSON F
WHEN ‘M’ THEN '’ JONES M
ELSE NULL

END IS NOT NULL
ORDER BY 1;

Figure 97, Use CASE in a predicate

SELECT lastname ANSWER
,LENGTH (RTRIM(lastname)) AS len —====================
,SUBSTR (lastname, 1, LASTNAME LEN LASTNM
CASE e e e ——— —m—---
WHEN LENGTH (RTRIM (lastname)) JEFFERSON 9 JEFFER
> 6 THEN 6 JOHNSON 7 JOHNSO
ELSE LENGTH (RTRIM(lastname)) JONES 5 JONES
END) AS lastnm
FROM employee
WHERE lastname LIKE 'J%’

ORDER BY 1;
Figure 98, Use CASE inside a function

The CASE expression can also be used in an UPDATE statement to do any one of several
aternative updates to a particular field in a single pass of the data:

38 CASE Expression

DB2 UDB/V8.1 Cookbook ©

UPDATE staff
SET comm = CASE dept
WHEN 15 THEN comm *
WHEN 20 THEN comm *
WHEN 38 THEN
CASE
WHEN years < 5 THEN comm * 1.3
WHEN years >= 5 THEN comm * 1.4
ELSE NULL
END
ELSE comm
END
WHERE comm IS NOT NULL
AND dept < 50;

Figure 99, UPDATE statement with nested CASE expressions

B
NP

WITH templ (cl,c2) AS ANSWER
(VALUES (88,9), (44,3), (22,0), (0,1)) —=======
SELECT c1 Cl C2 C3
,C2 - - --
,CASE c2 88 9 9
WHEN 0 THEN NULL 44 3 14
ELSE cl/c2 22 0 -
END AS c3 0O 1 o0

FROM templ;
Figure 100, Use CASE to avoid divide by zero

At least one of the resultsin a CASE expression must be non-null. Thisis so that DB2 will
know what output type to make the result. One can get around this restriction by using the
CAST expression. It is hard to imagine why one might want to do this, but it works:

SELECT name ANSWER
, CASE ——————=——===
WHEN name = LCASE (name) THEN NULL NAME DUMB
ELSE CAST(NULL AS CHAR(1)) ===mmmmm ———-
END AS dumb Sanders -
FROM staff Pernal -

WHERE id < 30;
Figure 101, Slly CASE expression that always returns NULL

Problematic CASE Statements

The case WHEN checks are always processed in the order that they are found. The first one
that matches is the one used. This means that the answer returned by the query can be affected
by the sequence on the WHEN checks. To illustrate this, the next statement uses the SEX
field (which isaways either "F"' or "M") to create a new field called SXX. In this particular
example, the SQL works as intended.

SELECT lastname ANSWER
, sex =================
, CASE LASTNAME SX SXX
WHEN sex >= ‘M’ THEN 'MAL’ - ———---oo - ——-
WHEN sex >= 'F’ THEN 'FEM’ JEFFERSON M MAL
END AS sxX JOHNSON F FEM
FROM employee JONES M MAL
WHERE lastname LIKE 'J%’

ORDER BY 1;
Figure 102, Use CASE to derive a value (correct)

In the example below al of the valuesin SXX field are "FEM". Thisis not the same as what
happened above, yet the only difference isin the order of the CASE checks.

Introduction to SQL 39

Graeme Birchall ©

SELECT lastname ANSWER
, sex =================
, CASE LASTNAME SX SXX
WHEN sex >= 'F’ THEN 'FEM’ ———----omm - -
WHEN sex >= 'M’ THEN ’'MAL’ JEFFERSON M FEM
END AS sxX JOHNSON F FEM
FROM employee JONES M FEM
WHERE lastname LIKE 'J%’

ORDER BY 1;
Figure 103, Use CASE to derive a value (incorrect)

In the prior statement the two WHEN checks overlap each other in terms of the values that
they include. Because the first check includes all values that a'so match the second, the latter
never getsinvoked. Note that this problem can not occur when all of the WHEN expressions
are equality checks.

DML (Data Manipulation Language)

The section has a very basic introduction to the INSERT, UPDATE, DELETE, and MERGE
statements. See the DB2 manuals for more details.

Select DML Changes

A special kind of SELECT statement (see page 47) can encompass an INSERT, UPDATE, or
DELETE statement to get the before or after image of whatever rows were changed (e.g. se-
lect the list of rows deleted). Thiskind of SELECT can be very useful when the DML state-
ment isinternally generating a value that one needs to know (e.g. an INSERT automatically
creates a new invoice number using a sequence column).

Insert

The INSERT statement is used to insert rows into atable, view, or full-select. To illustrate
how it is used, this section will use the EMP_ACT sample table, which is defined thus:

CREATE TABLE emp_ act

(empno CHARACTER (00006) NOT NULL
,projno CHARACTER (00006) NOT NULL
,actno SMALLINT NOT NULL
,emptime DECIMAL (05,02)

,emstdate DATE

,emendate DATE) ;

Figure 104, EMP_ACT sampletable - DDL

Insert Syntax

) INSERTINTO table-name
view-name t) ﬁ J
E(full-select) j (i column-name)

tINCLUDE — i column-name —— data-type —‘) J
FT VALUES —— (i expression)

LWITH —— common-table-expression
Figure 105, INSERT statement syntax

full-select J

40 DML (Data Manipulation Language)

DB2 UDB/V8.1 Cookbook ©

Usage Notes

e Onecaninsertinto atable, view, or full-select. If the object is not atable, then it must be
insertable (i.e. refer to asingle table, not have any column functions, etc).

e Onehasto provide alist of the columns (to be inserted) if the set of values provided does
not equal the complete set of columnsin the target table, or are not in the same order as
the columns are defined in the target table.

e Thecolumnsinthe INCLUDE list are not inserted. They are intended to be referenced in
a SELECT statement that encompasses the INSERT (see page 47).

e Theinput data can either be explicitly defined using the VALUES statement, or retrieved
from some other table using a full-select.

Direct Insert

To insert asingle row, where al of the columns are populated, one lists the input the valuesin
the same order as the columns are defined in the table:

INSERT INTO emp_act VALUES
(100000’ ,’ABC’ ,10 ,1.4 ,’2003-10-22’, '2003-11-24");

Figure 106, Sngle row insert

To insert multiple rows in one statement, separate the row values using a comma:

INSERT INTO emp_act VALUES

(200000’ ,’ABC’ ,10 ,1.4 ,’'2003-10-22’, '2003-11-24")
, (*200000" ,'DEF’ ,10 ,1.4 ,’'2003-10-22’, ’'2003-11-24")
, (’200000" ,"IJK’ ,10 ,1.4 ,’2003-10-22', ’'2003-11-24");

Figure 107, Multi row insert

NOTE: If multiple rows are inserted in one statement, and one of them violates a unique
index check, all of the rows are rejected.

The NULL and DEFAULT keywords can be used to assign these values to columns. One can
also refer to special registers, like the current date and current time:
INSERT INTO emp_act VALUES
(400000’ ,’ABC’ ,10 ,NULL ,DEFAULT, CURRENT DATE) ;
Figure 108,Using null and default values

To leave some columns out of the insert statement, one has to explicitly list those columns
that are included. When thisis done, one can refer to the columns (being inserted with data)
in any order:
INSERT INTO emp act (projno, emendate, actno, empno) VALUES
("ABC’ ,DATE (CURRENT TIMESTAMP) ,123 ,’500000");
Figure 109, Explicitly listing columns being populated during insert

Insert into Full-Select

The next statement inserts a row into a full-select that just happens to have a predicate which,
if used in a subsequent query, would not find the row inserted. The predicate has no impact
on theinsert itself:

INSERT INTO
(SELECT *
FROM emp_act
WHERE empno < ‘17
)
VALUES (’510000’ ,’ABC’ ,10 ,1.4 ,’2003-10-22', ’2003-11-24');

Figure 110, Insert into a full-select

Introduction to SQL 41

Graeme Birchall ©

One can insert rows into aview (with predicates in the definition) that are outside the bounds
of the predicates. To prevent this, define the view WITH CHECK OPTION.

Insert from Select
One can insert a set of rows that isthe result of a query using the following notation:

INSERT INTO emp_act

SELECT LTRIM(CHAR (id + 600000))
, SUBSTR (UCASE (name) ,1,6)
,salary / 229

;123
, CURRENT DATE
,'2003-11-11"

FROM staff
WHERE id < 50;

Figure 111,Insert result of select statement

NOTE: In the above example, the fractional part of the SALARY value is eliminated when
the data is inserted into the ACTNO field, which only supports integer values.

If only some columns are inserted using the query, they need to be explicitly listed:

INSERT INTO emp_ act (empno, actno, projno)
SELECT LTRIM(CHAR (id + 700000))
,MINUTE (CURRENT TIME)
, 'DEF’
FROM staff
WHERE 1d < 40;

Figure 112, Insert result of select - specified columns only

One reason why tables should always have unique indexes is to stop stupid SQL statements
like the following, which will double the number of rowsin the table:

INSERT INTO emp_act
SELECT *
FROM emp_act;

Figure 113, Stupid - insert - doubles rows

The select statement using the insert can be as complex as one likes. In the next example, it
contains the union of two queries:

INSERT INTO emp act (empno, actno, projno)

SELECT LTRIM(CHAR (id + 800000))
, 77
, I XYZ!

FROM staff

WHERE id < 40

UNION

SELECT LTRIM(CHAR(id + 900000))
,SALARY / 100
, 'DEF’

FROM staff

WHERE id < 50;

Figure 114, Inserting result of union

The select can also refer to acommon table expression. In the following example, six values
are first generated, each in a separate row. These rows are then selected from during the in-
sert:

42 DML (Data Manipulation Language)

DB2 UDB/V8.1 Cookbook ©

INSERT INTO emp act (empno, actno, projno, emptime)
WITH templ (coll) AS
(VALUES (1), (2),(3),(4),(5),(6))
SELECT LTRIM(CHAR (coll + 910000)
,coll
,CHAR (coll)
,coll / 2
FROM templ;

Figure 115, Insert from common table expression

)

The next example inserts multiple rows - all with an EMPNO beginning "92". Three rows are
found in the STAFF table, and all three are inserted, even though the sub-query should get
upset once the first row has been inserted. This doesn't happen because all of the matching
rowsin the STAFF table are retrieved and placed in awork-file before the first insert is done:

INSERT INTO emp act (empno, actno, projno)
SELECT LTRIM(CHAR(id + 920000))
,id
, ' ABC’
FROM staff
WHERE id < 40
AND NOT EXISTS
(SELECT *
FROM emp_act
WHERE empno LIKE '92%');

Figure 116, Insert with irrelevant sub-query
Update

The UPDATE statement is used to change one or more columns/rows in atable, view, or full-
select. Each column that is to be updated has to specified. Hereis an example:

UPDATE emp_act

SET emptime = NULL
,emendate = DEFAULT
,emstdate = CURRENT DATE + 2 DAYS
,actno = ACTNO / 2
,projno = 'ABC’
WHERE empno = ’100000";

Figure 117, Sngle row update
Update Syntax

V UPDATE — table-name or view-name or (full-select) L u
corr-name

tINCLUDE I i column-name —— data-type —‘)J
}* SET ilcolumn-name — = — expression ‘

Figure 118, UPDATE statement syntax

LWHERE - predicatesJ <

Usage Notes

e Onecan update rowsin atable, view, or full-select. If the object is not atable, then it
must be updateable (i.e. refer to asingle table, not have any column functions, etc).

e Thecorrelation nameis optional, and is only needed if there is an expression or predicate
that references another table.

e Thecolumnsinthe INCLUDE list are not updated. They are intended to be referenced in
a SELECT statement that encompasses the UPDATE (see page 47).

Introduction to SQL 43

Graeme Birchall ©

e The SET statement lists the columns to be updated, and the new value they will get.

e Predicates are optional. If none are provided, all rows in the table are updated.
Update Examples

To update all rowsin atable, leave off all predicates:

UPDATE emp act
SET actno = actno / 2;

Figure 119, Mass update

In the next example, both target columns get the same values. This happens because the result
for both columns is calculated before the first column is updated:

UPDATE emp_act acl

SET actno actno * 2
,emptime actno * 2

WHERE empno LIKE ’'910%’;

Figure 120, Two columns get same value

One can also have an update refer to the output of a select statement- as long as the result of
the select isasingle row:

UPDATE emp act

SET actno = (SELECT MAX (salary)
FROM staff)
WHERE empno = '200000";

Figure 121, Update using select

The following notation lets one update multiple columns using a single select:

UPDATE emp_act
SET (actno
,emstdate
,projno) = (SELECT MAX (salary)
, CURRENT DATE + 2 DAYS
,MIN (CHAR (id))
FROM staff
WHERE id <> 33)
WHERE empno LIKE ’'600%’;

Figure 122, Multi-row update using select

Multiple rows can be updated using multiple different values, aslong as there is a one-to-one
relationship between the result of the select, and each row to be updated.

UPDATE emp_act acl
SET (actno
,emptime) = (SELECT ac2.actno + 1
,acl.emptime / 2
FROM emp act ac2

WHERE ac2.empno LIKE '60%'
AND SUBSTR(ac2.empno,3) = SUBSTR(acl.empno, 3))

WHERE EMPNO LIKE ’700%’;
Figure 123, Multi-row update using correlated select

Using Full-selects

An update statement can be run against atable, aview, or afull-select. In the next example,
the tableisreferred to directly:

UPDATE emp_act

SET emptime = 10
WHERE empno = '000010"
AND projno = ‘MA2100';

Figure 124, Direct update of table

44 DML (Data Manipulation Language)

DB2 UDB/V8.1 Cookbook ©

Below isalogically equivalent update that pushes the predicates up into a full-select:

UPDATE
(SELECT *
FROM emp_act
WHERE empno = '000010"
AND projno = ’‘MA2100‘

)AS ea
SET emptime = 20;
Figure 125, Update of full-select

Using OLAP Functions

Imagine that we want to set the employee-time for a particular row inthe EMP_ACT tableto
the MAX time for that employee. Below is one way to do it:

UPDATE emp_act eal
SET emptime = (SELECT MAX (emptime)
FROM emp_act ea2
WHERE eal.empno = ea2.empno)
WHERE empno '000010"
AND projno "MA2100' ;
Figure 126, Set employee-time in row to MAX - for given employee

The same result can be achieved by calling an OLAP function in a full-select, and then updat-
ing the result. In next example, the MAX employee-time per employeeis calculated (for each
row), and placed in anew column. This column is then used to do the final update:

UPDATE

(SELECT eal.*
,MAX (emptime) OVER (PARTITION BY empno) AS maxtime

FROM emp_act eal
)AS ea2
SET emptime = maxtime
WHERE empno = '000010"
AND projno = ‘MA2100';

Figure 127, Use OLAP function to get max-time, then apply (correct)

The above statement has the advantage of only accessing the EMP_ACT table once. If there
were many rows per employee, and no suitable index (i.e. on EMPNO and EMPTIME), it
would be much faster than the prior update.

The next update is similar to the prior - but it does the wrong update! In this case, the scope of
the OLAP function is constrained by the predicate on PROJINO, so it no longer gets the MAX
time for the employee:

UPDATE emp act

SET emptime = MAX (emptime) OVER(PARTITION BY empno)
WHERE empno = '000010"
AND projno = ’'MA2100’;

Figure 128, Use OLAP function to get max-time, then apply (wrong)
Correlated and Uncorrelated Update

In the next example, regardless of the number of rows updated, the ACTNO will always come
out as one. Thisis because the sub-query that cal culates the row-number is correlated, which
means that it is resolved again for each row to be updated in the "AC1" table. At most, one
"AC2" row will match, so the row-number must always equal one:

Introduction to SQL 45

Graeme Birchall ©

UPDATE emp_act acl
SET (actno
,emptime) = (SELECT ROW_NUMBER () OVER()
,acl.emptime / 2
FROM emp act ac2

WHERE ac2.empno LIKE '60%'
AND SUBSTR(ac2.empno,3) = SUBSTR(acl.empno, 3))

WHERE EMPNO LIKE ’800%’;
Figure 129, Update with correlated query

In the next example, the ACTNO will be updated to be values 1, 2, 3, etc, in order that the
rows are updated. In this example, the sub-query that cal culates the row-number is uncorre-
lated, so al of the matching rows are first resolved, and then referred to in the next, corre-
lated, step:

UPDATE emp_act acl

SET (actno
,emptime) = (SELECT cl
,C2
FROM (SELECT ROW_NUMBER () OVER() AS cl

,actno / 100 AS c2
, empno
FROM emp_act
WHERE empno LIKE ’'60%’
)JAS ac2
WHERE SUBSTR (ac2.empno,3) = SUBSTR(acl.empno,3))
WHERE empno LIKE ’'900%’;

Figure 130, Update with uncorrelated query

Delete

The DELETE statement is used to remove rows from atable, view, or full-select. The set of
rows deleted depends on the scope of the predicates used. The following example would de-
lete asingle row from the EMP_ACT sampletable:

DELETE

FROM emp_act

WHERE empno = ’'000010"
AND projno = 'MA2100'
AND actno = 10;

Figure 131, Sngle-row delete
Delete Syntax

V DELETE FROM —— table-name or view-name or (full-select) u }

} L corr-name }

} tINCLUDE I i column-name —— data-type —‘ J {
LWHERE — predicates]

Figure 132, DELETE statement syntax
Usage Notes

e Onecan delete rows from atable, view, or full-select. If the object is not atable, then it
must be deletable (i.e. refer to asingle table, not have any column functions, etc).

e Thecorrelation nameisoptional, and is only needed if there is a predicate that references
another table.

e Thecolumnsinthe INCLUDE list are not updated. They are intended to be referenced in
a SELECT statement that encompasses the DELETE (see page 47).

46 DML (Data Manipulation Language)

DB2 UDB/V8.1 Cookbook ©

e Predicates are optional. If none are provided, all rows are deleted.
Basic Delete

The next example would delete all rowsinthe EMP_ACT table:

DELETE
FROM emp_act;

Figure 133, Mass delete

Correlated Delete

The next example deletes all the rowsin the STAFF table - except those that have the highest
ID in their respective department:

DELETE
FROM staff sl
WHERE id NOT IN
(SELECT MAX (id)
FROM staff s2
WHERE sl.dept = s2.dept);

Figure 134, Correlated delete (1 of 2)

Here is another way to write the same:

DELETE
FROM staff si1
WHERE EXISTS

(SELECT *

FROM staff s2

WHERE s2.dept = sl.dept
AND s2.1id > s1.id) ;

Figure 135, Correlated delete (2 of 2)

The next query islogically equivalent to the prior two, but it works quite differently. It usesa
full-select and an OLAP function to get, for each row, the ID, and also the highest ID valuein
the current department. All rows where these two values do not match are then del eted:
DELETE FROM
(SELECT id
,MAX (id) OVER(PARTITION BY dept) AS max_id
FROM staff

)AS ss
WHERE id <> max id;

Figure 136, Delete using full-select and OLAP function

Select DML Changes

One often needs to know what data a particular insert, update, or delete statement changed.
For example, one may need to get the key (e.g. invoice number) that was generated on the fly
(using an identity column - see page 229) during an insert, or get the set of rows that were
removed by adelete. All of this can be done by coding a special kind of select.

Select DML Syntax

) SELECT—column-list — FROM —EOLD TABLE —(—DMLstmt —) —

NEW
FINAL

4 [_WHERE __ predicates -/ L ORDER BY —[sort-columns 1 \
INPUT SEQUENCE i

Figure 137, Select DML statement syntax

Introduction to SQL 47

Graeme Birchall ©

Table Types

OLD: Hasthe before state of the data. Thisis allowed for an update and delete.

NEW: Has the after state of the data - before any triggers are applied. Thisis allowed for
an insert and an update.

FINAL: Has the final state of the data - after all triggers have been applied. Thisisal-
lowed for an insert and an update.

Usage Notes

Only one of the above tables can be listed in the FROM statement.
Thetable listed in the FROM statement cannot be given a correlation name.

No other table can be listed (i.e. joined to) in the FROM statement. One can reference
another tablein the SELECT list (see example page 51), or by using a sub-query in the
predicate section of the statement.

The SELECT statement cannot be embedded in a nested-table expression.
The SELECT statement cannot be embedded in an insert statement.

To retrieve (generated) columns that are not in the target table, list themin an INCLUDE
phrase in the DML statement. This technique can be used to, for example, assign row
numbers to the set of rows entered during an insert.

Predicates (on the select) are optional. They have no impact on the underlying DML.

The INPUT SEQUENCE phrase can be used in the ORDER BY to retrieve the rowsin
the same sequence as they were inserted. It is not valid in an update or delete.

The usual scalar functions, OLAP functions, and column functions, plus the GROUP BY
phrase, can be applied to the output - as desired.

Insert Examples

The example below selects from the final result of the insert:

ANSWER
SELECT empno EMPNO PRJ ACT
,projno AS prj mmmmm ——m -
,actno AS act 200000 ABC 10
FROM FINAL TABLE 200000 DEF 10

(INSERT INTO emp act
VALUES (’200000’,’ABC’,10 ,1,'2003-10-22’,/2003-11-24")
, (200000’ ,'DEF’,10 ,1,'2003-10-22','2003-11-24"))

ORDER BY 1,2,3;

Figure 138, Select rowsinserted

One way to retrieve the new rowsin the order that they were inserted is to include a column
in the insert statement that is a sequence number:

48

DML (Data Manipulation Language)

DB2 UDB/V8.1 Cookbook ©

SELECT empno ANSWER
,projno AS prj =================
,actno AS act EMPNO PRJ ACT R#
, row# AS T meeeee mee —-- -
FROM FINAL TABLE 300000 ZzZ 999 1
(INSERT INTO emp_act (empno, projno, actno) 300000 VvV 111 2

INCLUDE (row# SMALLINT)
VALUES (’300000’,'2%Z’,999,1)
, (3000007, /VVV’,111,2))
ORDER BY row#;
Figure 139, Include column to get insert sequence

The next example uses the INPUT SEQUENCE phrase to select the new rows in the order
that they were inserted. Row numbers are assigned to the outpui:

SELECT empno ANSWER
,projno AS prj =================
,actno AS act EMPNO PRJ ACT R#
,ROW_NUMBER () OVER() AS r# —=-=-= —-o ——o --
FROM FINAL TABLE 400000 zZZ 999 1
(INSERT INTO emp_act (empno, projno, actno) 400000 VVV 111 2

VALUES (’400000’,'ZZZ’',999)
, (7400000’,'VVV’,111))
ORDER BY INPUT SEQUENCE;

Figure 140, Select rowsininsert order

NOTE: The INPUT SEQUENCE phrase only works in an insert statement. It can be listed
in the ORDER BY part of the statement, but not in the SELECT part. The only way to dis-
play the row number of each row inserted is to explicitly assign row numbers.

In the next example, the only way to know for sure what the insert has done is to select from
the result. Thisis because the select statement (in the insert) has the following unknowns:

e Wedo not, or may not, know what ID values were selected, and thus inserted.
e The project-number is derived from the current-time special register.
e The action-number is generated using the RAND function.

Now for the insert:

SELECT empno ANSWER
,projno AS prj =================
,actno AS act EMPNO PRJ ACT R#
,ROW_NUMBER () OVER() AS r# —=----- --- -- ==
FROM NEW TABLE 600010 1 59 1
(INSERT INTO emp_act (empno, actno, projno) 600020 563 59 2
SELECT LTRIM(CHAR(id + 600000)) 600030 193 59 3

, SECOND (CURRENT TIME)
, CHAR (SMALLINT (RAND (1) * 1000))
FROM staff
WHERE id < 40)
ORDER BY INPUT SEQUENCE;

Figure 141, Select from an insert that has unknown values
Update Examples

The statement bel ow updates the matching rows by a fixed amount. The select statement gets
the old EMPTIME values:

Introduction to SQL 49

Graeme Birchall ©

SELECT empno ANSWER
,projno AS prj ======z==========
,emptime AS etime EMPNO PRJ ETIME
FROM OLD TABLE e e oo
(UPDATE emp_act 200000 ABC 1.00
SET emptime emptime * 2 200000 DEF 1.00

WHERE empno ’200000")

ORDER BY projno;
Figure 142, Select values - from before update

The next statement updates the matching EMPTIME values by random amount. To find out
exactly what the update did, we need to get both the old and new values. The new values are
obtained by selecting from the NEW table, while the old values are obtained by including a
column in the update which is set to them, and then subsequently selected:

SELECT projno AS prj ANSWER
,o0ld_t AS old_t ===============
,emptime AS new t PRJ OLD T NEW_T
FROM NEW TABLE === ——-—= -
(UPDATE emp_ act ABC 2.00 0.02
INCLUDE (old t DECIMAL(5,2)) DEF 2.00 11.27
SET emptime = emptime * RAND(1) * 10
,0ld t = emptime

WHERE empno 200000")

ORDER BY 1;
Figure 143, Select values - before and after update

Delete Examples

The following example lists the rows that were del eted:

SELECT projno AS prj ANSWER
,actno AS act =======

FROM OLD TABLE PRJ ACT
(DELETE e e
FROM emp_act VvV 111
WHERE empno = ‘300000’) ZZZ 999

ORDER BY 1,2;
Figure 144, List deleted rows

The next query deletes a set of rows, and assigns row-numbers (to the included field) as the
rows are deleted. The subsequent query selects every second row:

SELECT empno ANSWER
,projno ======s==============
,actno AS act EMPNO PROJNO ACT R#
, row# AS ¢ mmmmmm —mmme ——— -
FROM OLD TABLE 000260 AD3113 70 2
(DELETE 000260 AD3113 80 4
FROM emp_act 000260 AD3113 180 6
INCLUDE (row# SMALLINT)
SET row# = ROW _NUMBER () OVER()
WHERE empno = ‘000260")
WHERE row# = row# / 2 * 2

ORDER BY 1,2,3;
Figure 145, Assign row numbers to deleted rows

NOTE: Predicates (in the select result phrase) have no impact on the range of rows changed
by the underlying DML, which is determined by its own predicates.

One cannot join the table generated by a DML statement to another table, nor includeitina
nested table expression, but one can join in the SELECT phrase. The following deleteillus-
trates this concept by joining to the EMPLOY EE table:

50 DML (Data Manipulation Language)

DB2 UDB/V8.1 Cookbook ©

SELECT empno ANSWER
, (SELECT lastname =======S==s=s=s=s=SSSSSSSs====S
FROM (SELECT empno AS e# EMPNO LASTNAME PROJNO ACT
,lastname = = —----- —--omo-o oo oo
FROM employee 000010 HAAS AD3100 10
)AS xxX 000010 HAAS MA2100 10
WHERE empno = e#) 000010 HAAS MA2110 10
,projno AS projno 000020 THOMPSON PL2100 30
,actno AS act 000030 KWAN IF1000 10
FROM OLD TABLE
(DELETE
FROM emp_act

WHERE empno < ’0001')
FETCH FIRST 5 ROWS ONLY;

Figure 146, Join result to another table

Observe above that the EMPNO field in the EMPLOY EE table was be renamed (before doing
the join) using a nested table expression. This was necessary because one cannot join on two
fields that have the same name, without using correlation names. A correlation name cannot
be used on the OLD TABLE, so we had to rename the field to get around this problem.
Merge

A merge statement is a combination insert and update, or delete, statement on steroids. It can
be used to take the data from a source table, and combine it with the datain atarget table. The
qualifying rows in the source and target tables are first matched by unique key value, and then
evaluated:

e |f the sourcerow isalready in the target, the latter can be either updated or deleted.
o [f thesourcerow in not in the target, it can be inserted.
e |f desired, as SQL error can also be generated.

Below is the basic syntax diagram:

V MERGE INTO —— table-name or view-name or (full-select) }
__corr-name _|
USING ———— table-name or view-name or (full-select
V = or () L corr-name _| }
V ON — search-conditions }
}i WHEN MATCHED - 3 THEN —— UPDATE SET... | }
AND — search-c tDELETE
SIGNAL...
WHEN NOT MATCHED L THEN —— INSERT... —— |
AND — search-c J L SIGNAL... —
} B ELSE IGNORET {
Figure 147, MERGE statement syntax
Usage Rules

The following rules apply to the merge statement:

o Correlation names are optional, but are required if the field names are not unique.

Introduction to SQL 51

Graeme Birchall ©

o [f thetarget of the mergeisafull-select or aview, it must allow updates, inserts, and de-
letes- asif it were an ordinary table.

e Atleast one ON condition must be provided.
e TheON conditions must uniquely identify the matching rows in the target table.
e Eachindividual WHEN check can only invoke a single modification statement.

e When aMATCHED search condition istrue, the matching target row can be updated,
deleted, or an error can be flagged.

e When aNOT MATCHED search condition is true, the source row can be inserted into
the target table, or an error can be flagged.

e When more than one MATCHED or NOT MATCHED search condition istrue, the first
one that matches (for each type) is applied. This prevents any target row from being up-
dated or deleted more than once. Ditto for any source row being inserted.

o The ELSE IGNORE phrase specifies that no action be taken if no WHEN check evalu-
atesto true.

e [|f anerror is encountered, all changes are rolled back.
Sample Tables

To illustrate the merge statement, the following test tables were created and popul ated:

CREATE TABLE old staff AS OLD_STAFF NEW_STAFF
(SELECT id, job, salary e + - -------- +
FROM staff) ID|JOB SALARY ID| SALARY

WITH NO DATA; === === | ==

20|Sales|18171.25 30(1750.67

CREATE TABLE new staff AS 30 |Mgr 17506.75 40(1800.60
(SELECT id, salary 40|Sales|18006.00 50|2065.98
FROM staff) e I +

WITH NO DATA;

INSERT INTO old_staff INSERT INTO new_ staff

SELECT id, job, salary SELECT id, salary / 10

FROM staff FROM staff

WHERE id BETWEEN 20 and 40; WHERE id BETWEEN 30 and 50;

Figure 148, Sample tables for merge
Update or Insert Merge

The next statement merges the new staff table into the old, using the following rules:
e Thetwo tables are matched on common ID columns.

e |f arow matches, the salary is updated with the new value.

o [f thereis no matching row, a new row isinserted.

Now for the code:

52 DML (Data Manipulation Language)

DB2 UDB/V8.1 Cookbook ©

MERGE INTO old staff oo
USING new staff nn

ON 00.1id = nn.id
WHEN MATCHED THEN
UPDATE

SET oo.salary nn.salary
WHEN NOT MATCHED THEN

INSERT

VALUES

(nn.id, '?’ ,nn.salary) ;

Figure 149, Merge - do update or insert

Delete-only Merge

The next statement deletes all matching rows:

MERGE INTO old staff oo
USING new staff nn

ON 00.1id = nn.id
WHEN MATCHED THEN
DELETE;

Figure 150, Merge - delete if match

Complex Merge

The next statement has the following options:

Now for the code:

MERGE INTO old staff oo

USING new staff nn

ON oo.1id nn.id

WHEN MATCHED

AND oo.salary < 18000 THEN
UPDATE
SET oo.salary

WHEN MATCHED

AND oo.salary > 18000 THEN
DELETE

WHEN NOT MATCHED

nn.salary

AND nn.id > 10 THEN

INSERT

VALUES (nn.id,’?’,nn.salary)
WHEN NOT MATCHED THEN

SIGNAL SQLSTATE ’70001’

SET MESSAGE TEXT = ’'New ID <=

Figure 151, Merge with multiple options

Introduction to SQL

10’ ;

OLD_STAFF NEW_STAFF
Fommmmmmmmmm o — - + Hmmm-m----- +
ID|JOB SALARY ID|SALARY
20|Sales|18171.25 30(1750.67
30 |Mgr 17506.75 40(1800.60
40|Sales|18006.00 50]2065.98

ID JOB SALARY
20 Sales 18171.25
30 Mgr 1750.67
40 Sales 1800.60
50 ? 2065.98
AFTER-MERGE

ID JOB SALARY

20 Sales 18171.25

The two tables are matched on common ID columns.

If arow matches, and the old salary is < 18,000, it is updated.

If arow matches, and the old salary is > 18,000, it is del eted.

If no row matches, and the new ID is> 10, the new row is inserted.

If no row matches, and (by implication) the new ID is <= 10, an error is flagged.

OLD_STAFF NEW_STAFF
Fommmmmmmmmm o — - + Hmmm-m----- +
ID|JOB SALARY ID|SALARY
20|Sales|18171.25 30(1750.67
30 |Mgr 17506.75 40(1800.60
40|Sales|18006.00 50]2065.98

20 Sales 18171.25
30 Mgr 1750.67
50 ? 2065.98

53

Graeme Birchall ©

The merge statement is like the case statement (see page 37) in that the sequence in which
one writes the WHEN checks determines the processing logic. In the above example, if the
last check was written before the prior, any non-match would generate an error.

Using a Full-select

The following merge generates an input table (i.e. full-select) that has a single row containing
the MAX vaue of every field in the relevant table. Thisrow isthen inserted into the table:

MERGE INTO old staff AFTER-MERGE
USING =================
(SELECT MAX (id) + 1 AS max_id ID JOB SALARY

,MAX (job) AS max job == —mmmm —m—m—— -
,MAX (salary) AS max_sal 20 Sales 18171.25
FROM old staff 30 Mgr 17506.75
)AS mx 40 Sales 18006.00
ON id = max_id 41 Sales 18171.25
WHEN NOT MATCHED THEN
INSERT

VALUES (max_id, max_ job, max_sal) ;

Figure 152, Merge MAX row into table

Here is the same thing written as a plain on insert:

INSERT INTO old staff

SELECT MAX(id) + 1 AS max_id
,MAX (job) AS max_job
,MAX (salary) AS max_sal

FROM old staff;

Figure 153, Merge logic - done using insert

Use afull-select on the target and/or source table to limit the set of rows that are processed
during the merge:

MERGE INTO OLD_STAFF NEW_STAFF
(SELECT * o mmm e + - m—--- - +
FROM Old_staff ID|JOB SALARY ID|SALARY
WHERE id < 40 ==l mmmmm e o e
)AS oo 20|Sales|18171.25 30(1750.67

USING 30 |Mgr 17506.75 40|1800.60
(SELECT * 40|Sales|18006.00 50|2065.98
FROM new_staff fmm e I +
WHERE id < 50
)AS nn AFTER-MERGE

ON 0o0.id = nn.id =================

WHEN MATCHED THEN ID JOB SALARY
DELETE . mm mm e e s mmm—

WHEN NOT MATCHED THEN 20 Sales 18171.25
INSERT 40 ? 1800.60
VALUES (nn.id,’?’,nn.salary); 40 Sales 18006.00

Figure 154, Merge using two full-selects
Observe that the above merge did the following:
e Thetarget row with an ID of 30 was deleted - because it matched.

e Thetarget row with an ID of 40 was not deleted, because it was excluded in the full-
select that was done before the merge.

e Thesourcerow with an ID of 40 was inserted, because it was not found in the target full-
select. Thisiswhy the base table now has two rows with an ID of 40.

e The source row with an ID of 50 was not inserted, because it was excluded in the full-
select that was done before the merge.

54 DML (Data Manipulation Language)

DB2 UDB/V8.1 Cookbook ©

Listing Columns

The next example explicitly lists the target fields in the insert statement - so they correspond

to those listed in the following values phrase:

MERGE INTO old staff oo
USING new_staff nn
ON 0o0.id = nn.id
WHEN MATCHED THEN
UPDATE
SET (salary,job) = (1234,'?")
WHEN NOT MATCHED THEN
INSERT (id, salary, job)
VALUES (id,5678.9,'?");

Figure 155, Listing columns and valuesin insert

Introduction to SQL

AFTER-MERGE

20 Sales 18171.
30 °? 1234.
40 ? 1234.
50 ? 5678.

55

56

Graeme Birchall ©

DML (Data Manipulation Language)

DB2 UDB/V8.1 Cookbook ©

Compound SQL

A compound statement groups multiple independent SQL statements into a single executable.
In addition, simple processing logic can be included to create what is, in effect, avery basic
program. Such statements can be embedded in triggers, SQL functions, SQL methods, and
dynamic SQL statements.

Introduction

A compound SQL statement begins with an (optional) name, followed by the variable decla-
rations, followed by the procedural logic:

» — BEGIN ATOMIC)

4 j >
ECLARE | varname | data ype [DEFAULTNULL _

L_DEFAULT default value— |

VALUE
- SQLSTATE QW
DECLARE ———cond-name string constant

>_LSQL procedure statement ; ‘ END
LIabel:] N

Figure 156, Compound SQL Statement syntax

Below is a compound statement that reads a set of rows from the STAFF table and, for each
row fetched, updates the COMM field to equal the current fetch number.

BEGIN ATOMIC
DECLARE cntr SMALLINT DEFAULT 1;

FOR V1 AS
SELECT id as idval
FROM staff
WHERE id < 80
ORDER BY id

DO
UPDATE staff
SET comm = cntr
WHERE id = idval;
SET cntr = cntr + 1;

END FOR;

END

Figure 157, Sample Compound QL statement

Statement Delimiter

DB2 SQL does not come with an designated statement delimiter (terminator), though a semi-
colon is usually used. However, a semi-colon cannot be used in a compound SQL statement
because that character is used to differentiate the sub-components of the statement.

In DB2BATCH, one can run the SET DELIMITER command (intelligent comment) to use
something other than a semi-colon. The following script illustrates this usage:

Compound SQL 57

--#SET DELIMITER !
SELECT NAME FROM STAFF WHERE ID
--#SET DELIMITER ;

SELECT NAME FROM STAFF WHERE ID
Figure 158, Set Delimiter example

Graeme Birchall ©

10!

20;

SQL Statement Usage

When used in dynamic SQL, the following control statements can be used:

e FOR statement

e GET DIAGNOSTICS statement
e |F statement

e |TERATE statement

e | EAVE statement

e SIGNAL statement

e WHILE statement

NOTE: There are many more PSM control statements than what is shown above. But only
these ones can be used in Compound SQL statements.

The following SQL statement can be issued:

o full-select
e UPDATE
e DELETE
e INSERT

e SET variable statement

DECLARE Variables

All variables have to be declared at the start of the compound statement. Each variable must
be given a name and atype and, optionally, a default (start) value.

BEGIN ATOMIC

DECLARE aaa, bbb,
DECLARE ddd CHAR(10)
DECLARE eee INTEGER;
SET eee = aaa + 1;
UPDATE staff
SET comm = aaa
,salary = bbb
,years = eee
WHERE id = 10;
END

Figure 159, DECLARE examples

58

ccc SMALLINT DEFAULT 1;

DEFAULT NULL;

SQL Statement Usage

DB2 UDB/V8.1 Cookbook ©

FOR Statement
The FOR statement executes a group of statements for each row fetched from a query.

»ﬁFOR — for-loop-name — AS

label: P Lcursor-name —DEFAULT — }

Fselect-stmt —DO iSQL-procedure-stmt; J— END FOR ﬁNI bel
abel:

Figure 160, FOR statement syntax

In the example below, one row is fetched per DEPT in the STAFF table. That row is then
used to do two independent updates:

BEGIN ATOMIC

FOR V1 AS
SELECT dept AS dname
,max (id) AS max id
FROM staff

GROUP BY dept
HAVING COUNT (*) > 1
ORDER BY dept

DO
UPDATE staff
SET id = id * -1
WHERE id = max_id;
UPDATE staff
set dept = dept / 10
WHERE dept = dname

AND dept < 30;
END FOR;

END
Figure 161, FOR statement example

GET DIAGNOSTICS Statement

The GET DIAGNOSTICS statement returns information about the most recently run SQL
statement. One can either get the number of rows processed (i.e. inserted, updated, or de-
leted), or the return status (for an external procedure call).

}F GET DIAGNOSTICS — SQL-var-name — = —[ROW_COUNT TN
RETURN_COUNT

Figure 162, GET DIAGNOSTICS statement syntax

In the example below, some number of rows are updated in the STAFF table. Then the count
of rows updated is obtained, and used to update arow in the STAFF table:

BEGIN ATOMIC
DECLARE numrows INT DEFAULT O0;
UPDATE staff
SET salary = 12345
WHERE ID < 100;
GET DIAGNOSTICS numrows = ROW_COUNT;
UPDATE staff
SET salary = numrows
WHERE ID = 10;
END

Figure 163, GET DIAGNOSTICS statement example

Compound SQL 59

Graeme Birchall ©

IF Statement

The IF statement is used to do standard if-then-else branching logic. It aways begins with an
IF THEN statement and ends with and END |F statement.

}F IF —seach condition — THEN iSQL procedure statement ; J—}

iELSEIF — seach condition ——THEN —SQL procedure statement ; J;

} END IF N
—ELSE v J

SQL procedure statement ;

Figure 164, IF statement syntax

The next exampl e uses if-then-else logic to update one of three rows in the STAFF table, de-
pending on the current timestamp value:

BEGIN ATOMIC
DECLARE cur INT;
SET cur = MICROSECOND (CURRENT TIMESTAMP) ;
IF cur > 600000 THEN
UPDATE staff
SET name = CHAR (cur)
WHERE id = 10;
ELSEIF cur > 300000 THEN
UPDATE staff

SET name = CHAR (cur)
WHERE id = 20;

ELSE
UPDATE staff
SET name = CHAR (cur)
WHERE id = 30;

END IF;

END
Figure 165, IF statement example

ITERATE Statement

The ITERATE statement causes the program to return to the beginning of the labeled loop.
PP — ITERATE label P4

Figure 166, ITERATE statement syntax

In next example, the second update statement will never get performed because the ITERATE
will always return the program to the start of the loop:

BEGIN ATOMIC

DECLARE cntr INT DEFAULT O;

whileloop:

WHILE cntr < 60 DO
SET cntr = cntr + 10;
UPDATE staff
SET salary cntr
WHERE id cntr;
ITERATE whileloop;
UPDATE staff

SET comm = cntr + 1
WHERE id = cntr;
END WHILE;

END
Figure 167, ITERATE statement example

60 SQL Statement Usage

DB2 UDB/V8.1 Cookbook ©

LEAVE Statement
The LEAVE statement exits the labeled loop.

}F LEAVE — label N

Figure 168, LEAVE statement syntax

In the next example, the WHILE loop would continue forever, if left to its own devices. But
after some random number of iterations, the LEAV E statement will exit the loop:

BEGIN ATOMIC
DECLARE cntr INT DEFAULT 1;
whileloop:
WHILE 1 <> 2 DO
SET cntr = cntr + 1;
IF RAND() > 0.99 THEN
LEAVE whileloop;
END IF;
END WHILE;
UPDATE staff
SET salary = cntr
WHERE ID = 10;
END

Figure 169, LEAVE statement example

SIGNAL Statement

The SIGNAL statement is used to issue an error or warning message.

VALUE
SQLSTATE [1

v

sqlstate string

P)— sieNaL —[

condition-name

LSET ——MESSAGE_TEXT — = variable-name j—‘

E diagnostic-string

Figure 170, SGNAL statement syntax

The next example loops a random number of times, and then generates an error message us-
ing the SIGNAL command, saying how many loops were done:

BEGIN ATOMIC
DECLARE cntr INT DEFAULT 1;
DECLARE emsg CHAR(20) ;
whileloop:
WHILE RAND() < .99 DO
SET cntr = cntr + 1;

END WHILE;

SET emsg = '#loops: ' || CHAR(cntr);

SIGNAL SQLSTATE ’'75001’ SET MESSAGE TEXT = emsg;
END

Figure 171, SGNAL statement example

WHILE Statement

The WHILE statement repeats one or more statements while some condition is true.

»—mWHlLE —seach-condition —DO SQL-procedure-stmt ; J_}
END WHILE
H L tabel: — N

Figure 172, WHILE statement syntax

Compound SQL 61

Graeme Birchall ©

The next statement has two nested WHILE loops, and then updates the STAFF table:

BEGIN ATOMIC
DECLARE cl, C2 INT DEFAULT 1;
WHILE cl < 10 DO
WHILE c2 < 20 DO
SET c2 = c2 + 1;

END WHILE;
SET cl1 = cl + 1;
END WHILE;
UPDATE staff
SET salary = cl
, comm = c2
WHERE id = 10;

END
Figure 173, WHILE statement example

Other Usage

The following DB2 objects also support the language elements described above:
e Triggers.

e Stored procedures.

e User-defined functions.

e Embedded compound SQL (in programs).

Some of the above support many more language elements. For example stored procedures
that are written in SQL aso alow the following: ASSOCIATE, CASE, GOTO, LOOP, RE-
PEAT, RESIGNAL, and RETURN.

NOTE: To write stored procedures in the SQL language, you need a C compiler.
Test Query

To illustrate some of the above uses of compound SQL, we are going to get from the STAFF
table as complete list of departments, and the number of rows in each department. Here is the
basic query, with the related answer:

SELECT dept ANSWER
,count (*) as #rows ————======
FROM staff DEPT #ROWS
GROUP BY dept o
ORDER BY dept; 10 4
15 4
20 4
38 5
42 4
51 5
66 5
84 4

Figure 174, List departmentsin STAFF table

If al you want to get isthislist, the above query is the way to go. But we will get the same
answer using various other methods, just to show how it can be done using compound SQL
statements.

62 Other Usage

DB2 UDB/V8.1 Cookbook ©

Trigger

One cannot get an answer using atrigger. All one can do is alter what happens during an in-
sert, update, or delete. With thisin mind, the following example does the following:

e Setsthe statement delimiter to an "!". Because we are using compound SQL inside the
trigger definition, we cannot use the usual semi-colon.

o Creates anew table (note: triggers are not allowed on temporary tables).

e Creates an INSERT trigger on the new table. This trigger gets the number of rows per
department in the STAFF table - for each row (department) inserted.

e Insertsalist of departmentsinto the new table.

e Selectsfrom the new table.

Now for the code:
--#SET DELIMITER ! IMPORTANT
CREATE TABLE dpt This example
(dept SMALLINT NOT NULL uses an "I"
, #names SMALLINT as the stmt
, PRIMARY KEY (dept)) ! delimiter.
COMMIT!

CREATE TRIGGER dptl AFTER INSERT ON dpt
REFERENCING NEW AS NNN
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC
DECLARE namecnt SMALLINT DEFAULT O;
FOR getnames AS
SELECT COUNT (*) AS #n

FROM staff
WHERE dept = nnn.dept
DO
SET namecnt = #n;
END FOR;
UPDATE dpt
SET #names = namecnt
WHERE dept = nnn.dept; ANSWER
END! ===========
COMMIT! DEPT #NAMES
INSERT INTO dpt (dept) 10 4
SELECT DISTINCT dept 15 4
FROM staff! 20 4
COMMIT! 38 5
42 4
SELECT * 51 5
FROM dpt 66 5
ORDER BY dept! 84 4

Figure 175, Trigger with compound QL

NOTE: The above code was designed to be run in DB2BATCH. The "set delimiter" notation

will probably not work in other environments.

Scalar Function

One can do something very similar to the above that is amost as stupid using a user-defined
scalar function, that calculates the number of rowsin a given department. The basic logic will

go asfollows:

Compound SQL

63

Graeme Birchall ©

e Set the statement delimiter to an "!".
e Create the scalar function.
e Runaquery that first getsalist of distinct departments, then calls the function.

Hereisthe code:

--#SET DELIMITER ! IMPORTANT
CREATE FUNCTION dptl (deptin SMALLINT) This example
RETURNS SMALLINT uses an "!"
BEGIN ATOMIC as the stmt
DECLARE num_names SMALLINT; delimiter.

FOR getnames AS
SELECT COUNT (*) AS #n

FROM staff
WHERE dept = deptin
DO
SET num names = #n;
END FOR; ANSWER
RETURN num_names; ===========
END! DEPT #NAMES
COMMIT! e e
10 4
SELECT XXX . * 15 4
,dptl (dept) as #names 20 4
FROM (SELECT dept 38 5
FROM staff 42 4
GROUP BY dept 51 5
)AS XXX 66 5
ORDER BY dept! 84 4

Figure 176, Scalar Function with compound SQL

Because the query used in the above function will only ever return one row, we can greatly
simplify the function definition thus:

--#SET DELIMITER ! IMPORTANT
CREATE FUNCTION dptl (deptin SMALLINT) This example
RETURNS SMALLINT uses an "!"
BEGIN ATOMIC as the stmt
RETURN delimiter.

SELECT COUNT (*)

FROM staff

WHERE dept = deptin;
END!
COMMIT!

SELECT XXX . *
,dptl (dept) as #names

FROM (SELECT dept
FROM staff
GROUP BY dept
)AS XXX

ORDER BY dept!
Figure 177, Scalar Function with compound SQL

In the above example, the RETURN statement is directly finding the one matching row, and
then returning it to the calling statement.

Table Function

Below is amost exactly the same logic, thistime using a table function:

64 Other Usage

DB2 UDB/V8.1 Cookbook ©

--#SET DELIMITER !

CREATE FUNCTION dpt2 ()

RETURNS TABLE (dept SMALLINT
, #fnames SMALLINT)

BEGIN ATOMIC

RETURN

SELECT dept
,count (*)

FROM staff

GROUP BY dept
ORDER BY dept;
END!
COMMIT!

--#SET DELIMITER ;
SELECT *

FROM TABLE (dpt2()) T1
ORDER BY dept;

Figure 178, Table Function with compound SQL

Compound SQL

IMPORTANT

This example
uses an "!I"

as the stmt

delimiter.

DEPT #NAMES
10
15
20
38
42
51
66
84

DU U O

65

66

Graeme Birchall ©

Other Usage

DB2 UDB/V8.1 Cookbook ©

Column Functions

Introduction

By themselves, column functions work on the complete set of matching rows. One can use a
GROUPBY expression to limit them to a subset of matching rows. One can also usethemin
an OLAP function to treat individual rows differently.

WARNING: Be very careful when using either acolumn function, or the DISTINCT clause,
inajoin. If thejoinisincorrectly coded, and does some form of Cartesian Product, the col-
umn function may get rid of the all the extra (wrong) rows so that it becomes very hard to
confirm that the answer isincorrect. Likewise, be appropriately suspicious whenever you see
that someone (else) has used a DISTINCT statement in ajoin. Sometimes, users add the
DISTINCT clause to get rid of duplicate rows that they didn't anticipate and don't understand.

Column Functions, Definitions

AVG

Get the average (mean) value of aset of non-null rows. The columns(s) must be numeric.
ALL isthe default. If DISTINCT is used duplicate values are ignored. If no rows match, the
null value is returned.

ALL

F AVG [expression
(L DISTINCT — P) }
Figure 179, AVG function syntax
SELECT AVG (DEPT) AS Al ANSWER
,AVG (ALL DEPT) AS A2 ———=————=—======
,AVG (DISTINCT DEPT) AS A3 Al A2 A3 A4 A5
,AVG (DEPT/10) AS A4 R
,AVG(DEPT)/lO AS A5 41 41 40 3 4
FROM STAFF

HAVING AVG (DEPT) > 40;
Figure 180, AVG function examples

WARNING: Observe columns A4 and A5 above. Column A4 has the average of each value
divided by 10. Column A5 has the average of al of the values divided by 10. In the former
case, precision has been lost due to rounding of the original integer value and the result is
arguably incorrect. This problem also occurs when using the SUM function.

Averaging Null and Not-Null Values

Some database designers have an intense and irrational dislike of using nullable fields. What
they do instead is define al columns as not-null and then set the individual fieldsto zero (for
numbers) or blank (for characters) when the value is unknown. This solution is reasonablein
some situations, but it can cause the AV G function to give what is arguably the wrong an-
swer.

One solution to this problem is some form of counseling or group therapy to overcome the
phobia. Alternatively, one can use the CA SE expression to put null values back into the an-
swer-set being processed by the AV G function. The following SQL statement uses a modified

Column Functions 67

Graeme Birchall ©

version of the IBM sample STAFF table (all null COMM values were changed to zero) to
illustrate the technique:
UPDATE STAFF

SET COMM = 0
WHERE COMM IS NULL;

SELECT AVG (SALARY) AS SALARY ANSWER
,AVG (COMM) AS COMM1 s==================
,AVG (CASE COMM SALARY COMM1 COMM2
WHEN 0 THEN NULL mmmmmmm mmmmm oo
ELSE COMM 16675.6 351.9 513.3

END) AS COMM2
FROM STAFF;

UPDATE STAFF
SET COMM = NULL
WHERE COMM = 0O;

Figure 181, Convert zero to null before doing AVG

The COMM2 field above is the correct average. The COMM 1 field isincorrect because it has
factored in the zero rows with really represent null values. Note that, in this particular query,
one cannot use a WHERE to exclude the "zero" COMM rows because it would affect the av-
erage salary value.

Dealing with Null Output

The AVG, MIN, MAX, and SUM functions al return anull value when there are no match-
ing rows. One use the COALESCE function, or a CASE expression, to convert the null value
into a suitable substitute. Both methodologies are illustrated below:
SELECT COUNT (*) AS C1 ANSWER
,AVG (SALARY) AS Al ===========
, COALESCE (AVG (SALARY) ,0) AS A2 Cl A1 A2 A3
, CASE - e - -
WHEN AVG (SALARY) IS NULL THEN 0 o - 0 O
ELSE AVG (SALARY)
END AS A3

FROM STAFF
WHERE ID < 10;

Figure 182, Convert null output (from AVG) to zero
AVG Date/Time Values

The AV G function only accepts numeric input. However, one can, with abit of trickery, also
use the AV G function on a date field. First convert the date to the number of days since the
start of the Current Era, then get the average, then convert the result back to a date. Please be
aware that, in many cases, the average of a date does not really make good business sense.
Having said that, the following SQL gets the average birth-date of all employees:

SELECT AVG (DAYS (BIRTHDATE)) ANSWER
,DATE (AVG (DAYS (BIRTHDATE))) —o—ooooooooooooo=
FROM EMPLOYEE; 1 2

709113 06/27/1942
Figure 183, AVG of date column

Time data can be manipulated in asimilar manner using the MIDNIGHT_SECONDS func-
tion. If oneisreally desperate (or silly), the average of a character field can also be obtained
using the ASCII and CHR functions.

68 Column Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

Average of an Average

In some cases, getting the average of an average gives an overflow error. Inasmuch as you
shouldn’t do this anyway, it is no big deal:

SELECT AVG(AVG_SAL) AS AVG_AVG ANSWER
FROM (SELECT DEPT ================
,AVG (SALARY) AS AVG SAL <Overflow error>
FROM STAFF
GROUP BY DEPT
)AS XXX;

Figure 184, Select average of average

CORRELATION

I don't know athing about statistics, so | haven't a clue what this function does. But | do know
that the SQL Reference iswrong - because it says the value returned will be between 0 and 1.
| found that it is between -1 and +1 (see below). The output typeisfloat.

}—[CORRELATION (expression , expression) }
CORR
Figure 185, CORRELATION function syntax

WITH TEMP1 (COL1, COL2, COL3, COL4) AS ANSWER
(VALUES (O 12 0 12 0 12 R.AND(]_)) == EESE=EE==E================
UNION ALL COR11 COR12 COR23 COR34
SELECT COL1 + 1 | mmmmmm mmmmmm mmmmem ammeo-
,COL2 - 1 1.000 -1.000 -0.017 -0.005
, RAND ()
, RAND ()
FROM TEMP1
WHERE COL1 <= 1000
)

SELECT DEC (CORRELATION (COL1,COL1l),5,3) AS COR1l1l
,DEC (CORRELATION (COL1,COL2),5,3) AS COR12
,DEC (CORRELATION (COL2,COL3),5,3) AS COR23
,DEC (CORRELATION (COL3,COL4) ,5,3) AS COR34

FROM TEMP1;
Figure 186, CORRELATION function examples

COUNT

Get the number of valuesin a set of rows. Theresult is an integer. The value returned depends
upon the options used:

e COUNT(*) gets acount of matching rows.

e COUNT (expression) gets a count of rows with a non-null expression value.

e COUNT(ALL expression) isthe same as the COUNT (expression) statement.

e COUNT(DISTINCT expression) gets a count of distinct non-null expression values.

ALL
i
F COUNT (SISTINGT expression) }

*

Figure 187, COUNT function syntax

Column Functions 69

Graeme Birchall ©

SELECT COUNT (*) AS C1 ANSWER
, COUNT (INT (COMM/10)) AS C2 =================
,COUNT(ALL INT (COMM/10)) AS C3 Cl C2 C3 C4 C5 Ce
, COUNT (DISTINCT INT (COMM/10)) AS C4 - == == == == ==
, COUNT (DISTINCT INT (COMM)) AS C5 35 24 24 19 24 2
, COUNT (DISTINCT INT (COMM)) /10 AS Cé6

FROM STAFF;
Figure 188, COUNT function examples

There are 35 rows in the STAFF table (see C1 above), but only 24 of them have non-null
commission values (see C2 above).

If no rows match, the COUNT returns zero - except when the SQL statement also contains a
GROUPBY . In thislatter case, the result is no row.

SELECT "NO GP-BY’ AS C1 ANSWER

, COUNT (*) AS C2 ============
FROM STAFF Cc1 c2
WHERE IDb=-1 . ememeeaa --
UNION NO GP-BY 0
SELECT 'GROUP-BY’ AS C1

, COUNT (*) AS C2
FROM STAFF
WHERE ID = -1

GROUP BY DEPT;
Figure 189, COUNT function with and without GROUP BY

COUNT_BIG

Get the number of rows or distinct valuesin a set of rows. Use this function if the result istoo
large for the COUNT function. Theresult is of type decimal 31. If the DISTINCT option is
used both duplicate and null values are eliminated. If no rows match, the result is zero.

ALL
i
F COUNT _BIG (SISTINGT expression) }

*

Figure 190, COUNT_BIG function syntax

SELECT COUNT_BIG (*) AS C1 ANSWER
, COUNT_BIG (DEPT) AS C2 ===================
, COUNT BIG (DISTINCT DEPT) AS C3 Cl1 Cc2 C3 C4 C5
,COUNT BIG(DISTINCT DEPT/lO) AS C4 ——- Soo oo ool oo
, COUNT BIG(DISTINCT DEPT)/10 AS C5 35. 35. 8. 7. 0.

FROM STAFF;

Figure 191, COUNT_BIG function examples

COVARIANCE

Returns the covariance of a set of number pairs. The output type is float.

}—[COVARIANCE (expression , expression) }

COVAR

Figure 192, COVARIANCE function syntax

70 Column Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

WITH TEMP1 (Cl, C2, C3, C4) AS ANSWER
(VALUES (0, 0, 0, RAND(1)) ===============================
UNION ALL Ccovil coviz cov23 Cov34
SELECT C1 + 1 mmmmmmm mmmmmme mmmmmee eeeme oo
,C2 -1 83666. -83666. -1.4689 -0.0004
, RAND ()
, RAND ()

FROM TEMP1

WHERE C1 <= 1000

)

SELECT DEC (COVARIANCE (C1,C1l),6,0) AS COV1l
,DEC (COVARIANCE (C1,C2),6,0) AS COV12
, DEC (COVARIANCE (C2,C3),6,4) AS COV23
,DEC (COVARIANCE (C3,C4),6,4) AS COV34

FROM TEMP1;

Figure 193, COVARIANCE function examples

GROUPING

The GROUPING function is used in CUBE, ROLLUP, and GROUPING SETS statements to
identify what rows come from which particular GROUPING SET. A vaue of 1 indicates that
the corresponding data field is null because the row is from of a GROUPING SET that does
not involve this row. Otherwise, the valueis zero.

F GROUPING (

Figure 194, GROUPING function syntax

expression) }

SELECT DEPT ANSWER
,AVG (SALARY) AS SALARY ================
, GROUPING (DEPT) AS DF DEPT SALARY DF
FROM STAFF mmmm mmmmmm e -
GROUP BY ROLLUP (DEPT) 10 20865.86 O
ORDER BY DEPT; 15 15482.33 O
20 16071.52 0
38 15457.11 O
42 14592.26 0
51 17218.16 O
66 17215.24 O
84 16536.75 O
- 16675.64 1

Figure 195, GROUPING function example
NOTE: See the section titled "Group By and Having" for more information on this function.

MAX

Get the maximum value of a set of rows. The use of the DISTINCT option has no affect. If no
rows match, the null valueis returned.

ALL
F MAX [expression
(L DISTINCT P) }
Figure 196, MAX function syntax

SELECT MAX (DEPT) ANSWER

,MAX (ALL DEPT) —==============

,MAX (DISTINCT DEPT) 1 2 3 4

,MAX (DISTINCT DEPT/10) R
FROM STAFF; 84 84 84 8

Figure 197, MAX function examples

Column Functions 71

Graeme Birchall ©

MAX and MIN usage with Scalar Functions

Several DB2 scalar functions convert a value from one format to another, for example from
numeric to character. The function output format will not always shave the same ordering
sequence as the input. This difference can affect MIN, MAX, and ORDER BY processing.

SELECT MAX (HIREDATE) ANSWER
, CHAR (MAX (HIREDATE) , USA) —=—==============================
,MAX (CHAR (HIREDATE, USA)) 1 2 3

FROM EMPLOYEE; el o
09/30/1980 09/30/1980 12/15/1976

Figure 198, MAX function with dates

In the above the SQL, the second field gets the MAX before doing the conversion to character
whereas the third field works the other way round. In most cases, the later is wrong.

In the next example, the MAX function is used on a small integer value that has been con-
verted to character. If the CHAR function is used for the conversion, the output is left justi-
fied, which resultsin an incorrect answer. The DIGITS output is correct (in this example).

SELECT MAX (ID) AS ID ANSWER
,MAX (CHAR (ID)) AS CHR ===================
,MAX (DIGITS(ID)) AS DIG ID CHR DIG

FROM STAFF; Ll il .
350 90 00350

Figure 199, MAX function with numbers, 1 of 2

The DIGITS function can also give the wrong answer - if the input datais part positive and
part negative. Thisis because this function does not put asign indicator in the outpuit.

SELECT MAX(ID - 250) AS ID ANSWER
,MAX (CHAR (ID - 250)) AS CHR e
,MAX (DIGITS(ID - 250)) AS DIG ID CHR DIG

FROM STAFF; .
100 90 0000000240

Figure 200, MAX function with numbers, 2 of 2

WARNING: Be careful when using a column function on afield that has been converted
from number to character, or from date/time to character. The result may not be what you
intended.

MIN

Get the minimum value of a set of rows. The use of the DISTINCT option has no affect. If no
rows match, the null valueis returned.

ALL
F MIN [expression
(L__DISTINCT — P) }
Figure 201, MIN function syntax
SELECT MIN (DEPT) ANSWER
,MIN (ALL DEPT) m==============
,MIN(DISTINCT DEPT) 1 2 3 4
,MIN (DISTINCT DEPT/10) S
FROM STAFF; 10 10 10 1

Figure 202, MIN function examples

REGRESSION

The various regression functions support the fitting of an ordinary-least-squares regression
line of theformy =a* x + b to aset of number pairs.

72 Column Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

Vﬁ REGR_AVGX — 1 (—— expression , expression —) 4}

—— REGR_AVGY
—— REGR_COUNT
REGR_INTERCEPT
—[REGR_ICPT J

—— REGR_R2

—— REGR_SLOPE

—— REGR_SXX —————
—— REGR_SXY —————
—— REGR_SYY ————
Figure 203, REGRESSI ON functions syntax

Functions

o REGR_AVGX returns aquantity that than can be used to compute the validity of the re-
gression model. The output is of type float.

e REGR AVGY (sce REGR_AVGX).

e REGR_COUNT returns the number of matching non-null pairs. The output isinteger.
e REGR_INTERCEPT returnsthe y-intercept of the regression line.

o REGR_R2 returns the coefficient of determination for the regression.

e REGR_SI OPE returns the slope of the line.

e REGR_SXX (see REGR_AVGX).

e REGR_SXY (see REGR_AVGX).

e REGR_SYY (see REGR_AVGX).

See the IBM SQL Reference for more details on the above functions.

ANSWERS

SELECT DEC (REGR_SLOPE (BONUS, SALARY) ,7,5) AS R_SLOPE 0.01710
, DEC (REGR_INTERCEPT (BONUS, SALARY) ,7,3) AS R_ICPT 100.871
, INT (REGR_COUNT (BONUS, SALARY)) AS R_COUNT 3
, INT (REGR_AVGX (BONUS, SALARY)) AS R_AVGX 42833
, INT (REGR_AVGY (BONUS, SALARY)) AS R _AVGY 833
, INT (REGR_SXX (BONUS, SALARY)) AS R _SXX 296291666
, INT (REGR_SXY (BONUS, SALARY)) AS R _SXY 5066666
, INT (REGR_SYY (BONUS, SALARY)) AS R _SYY 86666

FROM EMPLOYEE

WHERE WORKDEPT = 'A00';

Figure 204, REGRESS ON functions examples

STDDEV

Get the standard deviation of a set of numeric values. If DISTINCT is used, duplicate values
areignored. If no rows match, the result is null. The output format is double.

ALL
i
F STDDEV (BISTINGT expression) }

Figure 205, STDDEV function syntax

Column Functions 73

Graeme Birchall ©

ANSWER
Al S1 S2 S3 S4
SELECT AVG (DEPT) AS Al 41 +2.3522355E+1 23.5 23.5 24.1

, STDDEV (DEPT) AS S1

,DEC (STDDEV (DEPT) ,3,1) AS S2

,DEC (STDDEV (ALL DEPT),3,1) AS S3

,DEC (STDDEV (DISTINCT DEPT),3,1) AS S4
FROM STAFF;

Figure 206, STDDEYV function examples
SUM

Get the sum of a set of numeric values If DISTINCT is used, duplicate values are ignored.
Null values are always ignored. If no rows match, the result is null.

ALL

F SUM [expression
(L DISTINCT P) }
Figure 207, SUM function syntax
SELECT SUM (DEPT) AS S1 ANSWER
,SUM(ALL DEPT) AS S2 —==—=—====================
,SUM(DISTINCT DEPT) AS S3 S1 S2 S3 S4 S5
,SUM (DEPT/10) AS S4 mmmm mmm o oo oo
,SUM (DEPT) /10 AS S5 1459 1459 326 134 145
FROM STAFF;

Figure 208, SUM function examples

WARNING: The answers $4 and S5 above are different. Thisis because the division is done
before the SUM in column $S4, and after in column S5. In the former case, precision has been
lost due to rounding of the original integer value and the result is arguably incorrect. Whenin
doubt, use the S5 notation.

VAR or VARIANCE

Get the variance of a set of numeric values. If DISTINCT is used, duplicate values areig-
nored. If no rows match, the result is null. The output format is double.

ALL

VARIANCE - I X i
>—[VAR (—oistine — expression) }
Figure 209, VARIANCE function syntax
ANSWER
atvi vz v3 va
SELECT AVG(DEPT) AS Al 41 +5.533012244E+2 553 553 582

, VARIANCE (DEPT) AS S1

, DEC (VARIANCE (DEPT) ,4,1) AS S2

,DEC (VARIANCE (ALL DEPT),4,1) AS S3

,DEC (VARIANCE (DISTINCT DEPT),4,1) AS S4
FROM STAFF;

Figure 210, VARIANCE function examples

74 Column Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

OLAP Functions

Introduction

The OLAP (Online Analytical Processing) functions enable one sequence and rank query
rows. They are especialy useful when the calling programis very simple.

The Bad Old Days

To really appreciate the value of the OLAP functions, one should try to do some seemingly
trivial task without them. To illustrate this point, below isasimple little query:

SELECT S1.J0OB, S1.ID, S1.SALARY ANSWER
FROM STAFF S1 S———o—ooooooooooo

WHERE S1.NAME LIKE ’%s%’ JOB ID SALARY
AND S1.1ID < 90 ool o oo
ORDER BY S1.JOB Clerk 80 13504.60
,S1.1ID; Mgr 10 18357.50

Mgr 50 20659.80
Figure 211, Select rows from STAFF table

Let us now add two fields to this query:
e A running sum of the salaries selected.
e A running count of the rows retrieved.

Adding these fieldsis easy - when using OLAP functions:

SELECT S1.J0B, S1.ID, S1.SALARY
,SUM (SALARY) OVER (ORDER BY JOB, ID) AS SUMSAL

,ROW_NUMBER () OVER (ORDER BY JOB, ID) AS R ANSWER

FROM STAFF S1 ======
WHERE S1.NAME LIKE ’%s%’ JOB ID SALARY SUMSAL R
AND S1.ID < 9 mmmmm o= mmmmm—— —mm-— oo -
ORDER BY S1.J0B Clerk 80 13504.60 13504.60 1
,81.1ID; Mgr 10 18357.50 31862.10 2

Mgr 50 20659.80 52521.90 3

Figure 212, Using OLAP functions to get additional fields

If one does not have OLAP functions, or one istoo stupid to figure out how to use them, or
one gets paid by the hour, one can still get the required answer, but the code is quite tricky.
The problem is that this seemingly simple query contains two nasty tricks:

e Not al of the rowsin the table are selected.
e Theoutput isordered on two fields, the first of which is not unique.

Below are severa examples that use plain SQL to get the above answer. All of the examples
have the same generic design (i.e. join each matching row to itself and all previous matching
rows) and share similar problems (i.e. difficult to read, and poor performance).

Nested Table Expression

Below is aquery that uses a nested table expression to get the additional fields. This SQL has
the following significant features:

e TheTABLE phraseis required because the nested table expression has a correlated refer-
ence to the prior table. See page 249 for more details on the use of this phrase.

OLAP Functions 75

Graeme Birchall ©

e There are no join predicates between the nested table expression output and the origina
STAFF table. They are unnecessary because these predicates are provided in the body of
the nested table expression. With them there, and the above TABLE function, the nested
table expression is resolved once per row obtained from the STAFF Sl table.

e Theorigind literal predicates have to be repeated in the nested table expression.

e Thecorrelated predicatesin the nested table expression have to match the ORDER BY
sequence (i.e. first JOB, then ID) in the final output.

Now for the query:

SELECT S1.J0B, S1.ID, S1.SALARY
, XX.SUMSAL, XX.R

FROM STAFF S1
, TABLE
(SELECT SUM(S2.SALARY) AS SUMSAL
, COUNT (*) AS R

FROM STAFF S2
WHERE S2.NAME LIKE '%s%’

AND S2.ID < 90
AND (S2.J0OB < S1.J0B
OR (S2.J0B = S1.J0B ANSWER

AND S2.ID <= S1.ID)) ============================
)AS XX JOB ID SALARY SUMSAL R
WHERE S1.NAME LIKE ’'%s%’ @ —mmm= mm mmmmmmmm —m— - -
AND S1.ID < 90 Clerk 80 13504.60 13504.60 1
ORDER BY S1.J0OB Mgr 10 18357.50 31862.10 2
,S1.1ID; Mgr 50 20659.80 52521.90 3

Figure 213, Using Nested Table Expression to get additional fields
Ignoring any readability issues, this query has some major performance problems:

o Thenested table expression isa partial Cartesian product. Each row fetched from "S1" is
joined to all prior rows (in "S2"), which quickly getsto be very expensive.

e Thejoin criteriamatch the ORDER BY fields. If the latter are suitably complicated, then
the join is going to be inherently inefficient.

Self-Join and Group By

In the next example, the STAFF table isjoined to itself such that each matching row obtained

fromthe"S1" tableisjoined to all prior rows (plus the current row) in the "S2" table, where

"prior" isafunction of the ORDER BY clause used. After the join, a GROUP BY is needed
in order to roll up the matching "S2" rows up into one:

SELECT S1.J0B, S1.ID, S1.SALARY ANSWER
,SUM (S2.SALARY) AS SUMSAL ============================
, COUNT (*) AS R JOB ID SALARY SUMSAL R
FROM STAFF S12 mmmmm = mmmmmmmm ————— - -
, STAFF S2 Clerk 80 13504.60 13504.60 1
WHERE S1.NAME LIKE ’%s%’ Mgr 10 18357.50 31862.10 2
AND S1.ID < 90 Mgr 50 20659.80 52521.90 3
AND S2.NAME LIKE ’%s%’
AND S2.ID < 90
AND (S2.J0B < S1.J0B
OR (S2.J0B = S1.J0OB
AND S2.1ID <= S81.ID))
GROUP BY S1.J0OB
,S1.ID
,S1.SALARY
ORDER BY S1.J0B
,81.1ID;

Figure 214, Using Self-Join and Group By to get additional fields

76 Introduction

DB2 UDB/V8.1 Cookbook ©

Nested Table Expressions in Select

In our final example, two nested table expression are used to get the answer. Both are donein

the SELECT part of the main query:

SELECT S1.J0B, S1.ID, S1.SALARY
, (SELECT SUM(S2.SALARY)
FROM STAFF S2
WHERE S2.NAME LIKE ’%s%’

AND S2.ID < 90
AND (S2.J0B < S1.J0B
OR (S2.J0B = S1.J0OB

AND 82.1ID
, (SELECT COUNT (*)
FROM STAFF S3
WHERE S3.NAME LIKE ’%s%’

S1.ID))) AS SUMSAL

N

AND S3.ID < 90
AND (S3.J0B < S1.J0B
OR (S3.J0B = S1.J0OB
AND S3.1ID <= S1.ID))) AS R
FROM STAFF S1
WHERE S1.NAME LIKE ’'%s%’
AND S1.ID < 90
ORDER BY S1.J0B JOB ID
,81.1D; === --
Clerk 8
Mgr 10
Mgr 50

13504.60
18357.50
20659.80

Figure 215, Using Nested Table Expressionsin Select to get additional fields

13504.60 1
31862.10 2
52521.90 3

Once again, this query processes the matching rows multiple times, repeats predicates, has
join predicates that match the ORDER BY , and does apartial Cartesian product. The only
difference hereisthat this query commits al of the above sinstwice.

Conclusion

Almost anything that an OLAP function does can be done some other way using simple SQL.
But as the above examplesillustrate, the alternatives are neither pretty nor efficient. And re-
member that the initial query used above was actually very simple. Feel freeto try replacing
the OLAP functionsin the following query with their SQL equivalents:

SELECT DPT.DEPTNAME
, EMP . EMPNO
, EMP . LASTNAME
, EMP.SALARY

,SUM (SALARY) OVER (ORDER BY DPT.DEPTNAME ASC
, EMP.SALARY DESC

, EMP . EMPNO ASC) AS SUMSAL
,ROW_NUMBER () OVER (ORDER BY DPT.DEPTNAME ASC
, EMP.SALARY DESC
, EMP . EMPNO ASC) AS ROW#
FROM EMPLOYEE EMP
, DEPARTMENT DPT
WHERE EMP.FIRSTNME LIKE '%S%’
AND EMP . WORKDEPT = DPT.DEPTNO
AND DPT.ADMRDEPT LIKE 'A%’
AND NOT EXISTS
(SELECT *
FROM EMP_ACT EAT
WHERE EMP . EMPNO = EAT.EMPNO

AND EAT.EMPTIME > 10)
ORDER BY DPT.DEPTNAME ASC
, EMP.SALARY DESC
, EMP . EMPNO ASC;

Figure 216, Complicated query using OLAP functions

OLAP Functions

77

Graeme Birchall ©

OLAP Functions, Definitions

Ranking Functions

The RANK and DENSE_RANK functions enable one to rank the rows returned by a query.
Theresult is of type BIGINT.

>E RANK()
DENSE_RANK() j
L PARTITION BY ipartitioning expression JJ

OVER(}

asc option
D ORDERBY gsort-key expression [2°C oo]))

| desc optionJ

asc option

[NULLSLAST —|
} ASC | NULLS FIRST _| }

desc option
NULLS FIRSTj

~
p—oEsc | NULLSLAST _| 4
Figure 217, Ranking Functions syntax

NOTE: The ORDER BY phrase, which isrequired, is used to both sequence the values, and
to tell DB2 when to generate a new value. See page 79 for details.

RANK vs. DENSE_RANK

The two functions differ in how they handle multiple rows with the same value:

o TheRANK function returns the number of proceeding rows, plus one. If multiple rows
have equal values, they al get the same rank, while subsequent rows get a ranking that
counts all of the prior rows. Thus, there may be gaps in the ranking sequence.

e TheDENSE RANK function returns the number of proceeding distinct values, plus one.
If multiple rows have equal values, they all get the samerank. Each change in datavalue
causes the ranking number to be incremented by one.

The following query illustrates the use of the two functions:

78 OLAP Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

SELECT ID
, YEARS
, SALARY
, RANK () OVER (ORDER BY YEARS) AS RANK#
,DENSE_RANK () OVER (ORDER BY YEARS) AS DENSE#
,ROW_NUMBER () OVER (ORDER BY YEARS) AS ROW#

FROM STAFF

WHERE ID < 100

AND YEARS IS NOT NULL ANSWER
ORDER BY YEARS;

30 5 17506.75
40 6 18006.00
90 6 18001.75
10 7 18357.50
70 7 16502.83
20 8 18171.25
50 10 20659.80

Figure 218, Ranking functions example
ORDER BY Usage

Nouds WN

The ORDER BY phrase, which is mandatory, gives a sequence to the ranking, and also tells
DB2 when to start anew rank value. The following query illustrates both uses:

SELECT JOB

, YEARS

,ID

, NAME

, SMALLINT (RANK () OVER (ORDER BY JOB ASC))

, SMALLINT (RANK () OVER (ORDER BY JOB ASC
,YEARS ASC))

, SMALLINT (RANK () OVER (ORDER BY JOB ASC
,YEARS ASC
,ID ASC))

, SMALLINT (RANK () OVER (ORDER BY JOB DESC))

, SMALLINT (RANK () OVER (ORDER BY JOB DESC
,YEARS DESC))

, SMALLINT (RANK () OVER (ORDER BY JOB DESC
, YEARS DESC

,ID DESC))
, SMALLINT (RANK () OVER (ORDER BY JOB ASC
, YEARS DESC
,ID ASC))
, SMALLINT (RANK () OVER(ORDER BY JOB DESC
, YEARS ASC
,ID DESC))
FROM STAFF
WHERE 1D < 150
AND YEARS 1IN (6,7)
AND JOB > L’
ORDER BY JOB
, YEARS
, 1D;

AS

ASC1

ASC2

ASC3

DSC1

DSC2

DSC3

MIX1

MIX2

Mgr 6 140 Fraye 1 1 1 4
Mgr 7 10 Sanders 2 2 4
Mgr 7 100 Plotz 1 2 3 4
Sales 6 40 O’Brien 4 4 4 1
Sales 6 90 Koonitz 4 4 5 1
Sales 7 70 Rothman 4 6 6 1

Figure 219, ORDER BY usage

OLAP Functions

79

Graeme Birchall ©

Observe above that adding more fields to the ORDER BY phrase resulted in more ranking
values being generated.

Ordering Nulls

When writing the ORDER BY/, one can optionally specify whether or not null values should
be counted as high or low. The default, for an ascending field is that they are counted as high
(i.e. come last), and for a descending field, that they are counted as low:

SELECT ID

, YEARS AS YR
, SALARY
,DENSE_RANK () OVER(ORDER BY YEARS ASC) AS A
,DENSE_RANK() OVER(ORDER BY YEARS ASC NULLS FIRST) AS AF
,DENSE_RANK () OVER(ORDER BY YEARS ASC NULLS LAST) AS AL
,DENSE_RANK () OVER(ORDER BY YEARS DESC) AS D
,DENSE_RANK () OVER(ORDER BY YEARS DESC NULLS FIRST) AS DF
,DENSE_RANK() OVER(ORDER BY YEARS DESC NULLS LAST) AS DL
FROM STAFF
WHERE ID < 100
ORDER BY YEARS ANSWER
, SALARY; ==================================
ID YR SALARY A AF AL D DF DL
30 5 17506.75 1 2 1 6 6 5
90 6 18001.75 2 3 2 5 5 4
40 6 18006.00 2 3 2 5 5 4
70 7 16502.83 3 4 3 4 4 3
10 7 18357.50 3 4 3 4 4 3
20 8 18171.25 4 5 4 3 3 2
50 10 20659.80 5 6 5 2 2 1
80 - 13504.60 6 1 6 1 1 &6
60 - 16808.30 6 1 6 1 1 &6

Figure 220, Overriding the default null ordering sequence

In generd, in arelational database one null value does not equal another null value. But, asis
illustrated above, for purposes of assigning rank, al null values are considered equal.

NOTE: The ORDER BY used in the ranking functions (above) has nothing to do with the
ORDER BY at the end of the query. The latter defines the row output order, while the former
tells each ranking function how to sequence the values. Likewise, one cannot define the null
sort sequence when ordering the rows.

Counting Nulls

The DENSE RANK and RANK functions include null values when calculating rankings. By
contrast the COUNT DISTINCT statement excludes null values when counting values. Thus,
asisillustrated below, the two methods will differ (by one) when they are used get a count of
distinct values - if there are nulls in the target data:

SELECT COUNT (DISTINCT YEARS) AS Y#1

,MAX (Y#) AS Y#2
FROM (SELECT YEARS
,DENSE_RANK() OVER(ORDER BY YEARS) AS Y#
FROM STAFF
WHERE ID < 100
)AS XXX ANSWER
ORDER BY 1; =======
YH1 Y#2
5 6

Figure 221, Counting distinct values - comparison

80 OLAP Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

PARTITION Usage

The PARTITION phrase lets one rank the data by subsets of the rows returned. In the follow-
ing example, the rows are ranked by salary within year:

SELE

FROM

CT

’
’

’

WHERE
AND
ORDER BY YEARS

’

ID

YEARS AS YR

SALARY

RANK () OVER (PARTITION BY YEARS
ORDER BY SALARY)

STAFF

ID < 80

YEARS IS NOT NULL

SALARY;

Figure 222, Values ranked by subset of rows
Multiple Rankings

AS R1

One can do multiple independent rankings in the same query:

SELE

FROM
WHER

CT

’

’

ID
YEARS
SALARY

, SMALLINT (RANK () OVER(ORDER BY YEARS ASC))
SMALLINT (RANK () OVER (ORDER BY YEARS DESC))
, SMALLINT (RANK () OVER(ORDER BY ID, YEARS))

’

E

AND
ORDER BY YEARS;

Figure 223, Multiple rankings in same query

STAFF
ID < 100
YEARS IS NOT NULL

Dumb Rankings

ANSWER
ID YR SALARY
30 5 17506.75
40 6 18006.00
70 7 16502.83
10 7 18357.50
20 8 18171.25
50 0 20659.80
AS RANK A
AS RANK D

AS RANK TIY

If one wants to, one can do some really dumb rankings. All of the examples below are fairly
stupid, but arguably the dumbest of thelot isthe last. In this case, the "ORDER BY 1" phrase

ranks the rows returned by the constant "one", so every row gets the same rank. By contrast

the"ORDER BY 1" phrase at the bottom of the query sequences the rows, and so has valid
business meaning:

SELECT ID
, YEARS
, NAME
, SALARY
, SMALLINT (RANK () OVER (ORDER
, SMALLINT (RANK () OVER (ORDER
, SMALLINT (RANK () OVER (ORDER
, SMALLINT (RANK () OVER (ORDER
, SMALLINT (RANK () OVER (ORDER
FROM STAFF
WHERE ID < 40
AND YEARS IS NOT NULL
ORDER BY 1;
Figure 224, Dumb rankings, SQL
ID YEARS NAME SALARY DUMB1
10 7 Sanders 18357.50 1
20 8 Pernal 18171.25 3
30 5 Marenghi 17506.75 2

Figure 225, Dumb ranking, Answer

OLAP Functions

SUBSTR (NAME, 3,2)))
SALARY / 1000))
YEARS * ID))
RAND ()))

1))

DUMB2

DUMB3

DUMB4

AS DUMB1
AS DUMB2
AS DUMB3
AS DUMB4
AS DUMBS5

DUMBS5

81

Graeme Birchall ©

Subsequent Processing

The ranking function gets the rank of the value as of when the function was applied. Subse-
guent processing may mean that the rank no longer makes sense. To illustrate this point, the
following query ranks the same field twice. Between the two ranking calls, some rows were
removed from the answer set, which has caused the ranking results to differ:

SELECT XXX . * ANSWER
,RANK () OVER (ORDER BY ID) AS R2 ================
FROM (SELECT ID ID NAME R1 R2
,NAME == mmmm—mm = -
,RANK () OVER (ORDER BY ID) AS R1 40 O'Brien 4 1
FROM STAFF 50 Hanes 5 2
WHERE ID < 100 70 Rothman 6 3
AND YEARS IS NOT NULL 90 Koonitz 7 4
)AS XXX
WHERE ID > 30

ORDER BY ID;
Figure 226, Subsequent processing of ranked data

Ordering Rows by Rank

One can order the rows based on the output of aranking function. This can let one sequence
the datain ways that might be quite difficult to do using ordinary SQL. For example, in the
following query the matching rows are ordered so that all those staff with the highest salary in
their respective department come first, followed by those with the second highest salary, and
so on. Within each ranking value, the person with the highest overall salary is listed first:

SELECT ID ANSWER
,RANK () OVER (PARTITION BY DEPT =================
ORDER BY SALARY DESC) AS R1 ID R1 SALARY DP
,SALARY == -- m-————-- -
,DEPT AS DP 50 1 20659.80 15
FROM STAFF 10 1 18357.50 20
WHERE ID < 80 40 1 18006.00 38
AND YEARS IS NOT NULL 20 2 18171.25 20
ORDER BY R1 ASC 30 2 17506.75 38
, SALARY DESC; 70 2 16502.83 15

Figure 227, Ordering rows by rank, using RANK function

Here is the same query, written without the ranking function:

SELECT ID ANSWER

, (SELECT COUNT (*) =================

FROM STAFF S2 ID R1 SALARY DP

WHERE S2.ID <80 == == mmmmm——= -

AND S2.YEARS IS NOT NULL 50 1 20659.80 15

AND S2.DEPT = S1.DEPT 10 1 18357.50 20

AND S2.SALARY >= S1.SALARY) AS R1 40 1 18006.00 38

, SALARY 20 2 18171.25 20

,DEPT AS DP 30 2 17506.75 38

FROM STAFF S1 70 2 16502.83 15
WHERE ID < 80

AND YEARS IS NOT NULL

ORDER BY R1 ASC

, SALARY DESC;
Figure 228, Ordering rows by rank, using sub-query

The above query has all of the failings that were discussed at the beginning of this chapter:

e Thenested table expression has to repeat all of the predicates in the main query, and have
predicates that define the ordering sequence. Thusit is hard to read.

e Thenested table expression will (inefficiently) join every matching row to all prior rows.

82 OLAP Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

Selecting the Highest Value

The ranking functions can also be used to retrieve the row with the highest value in a set of
rows. To do this, one must first generate the ranking in a nested table expression, and then
query the derived field later in the query. The following statement illustrates this concept by
getting the person, or persons, in each department with the highest salary:

SELECT ID ANSWER
, SALARY ==============
,DEPT AS DP ID SALARY DP
FROM (SELECT S1.* el e oo
,RANK () OVER (PARTITION BY DEPT 50 20659.80 15
ORDER BY SALARY DESC) AS R1 10 18357.50 20
FROM STAFF S1 40 18006.00 38
WHERE ID < 80
AND YEARS IS NOT NULL
)AS XXX
WHERE R1 = 1

ORDER BY DP;
Figure 229, Get highest salary in each department, use RANK function

Here is the same query, written using a correlated sub-query:

SELECT ID ANSWER
, SALARY —=============
,DEPT AS DP ID SALARY DP
FROM STAFF S1 oo -
WHERE ID < 80 50 20659.80 15
AND YEARS IS NOT NULL 10 18357.50 20
AND NOT EXISTS 40 18006.00 38
(SELECT *
FROM STAFF S2
WHERE S2.ID < 80
AND S2.YEARS IS NOT NULL
AND S2.DEPT = S1.DEPT
AND S2.SALARY > S1.SALARY)

ORDER BY DP;
Figure 230, Get highest salary in each department, use correlated sub-query

Here is the same query, written using an uncorrelated sub-query:

SELECT ID ANSWER
, SALARY S=—=oo—oooooos
,DEPT AS DP ID SALARY DP
FROM STAFF e e
WHERE D < 80 50 20659.80 15
AND YEARS IS NOT NULL 10 18357.50 20
AND (DEPT, SALARY) IN 40 18006.00 38
(SELECT DEPT, MAX (SALARY)
FROM STAFF
WHERE D < 80
AND YEARS IS NOT NULL

GROUP BY DEPT)
ORDER BY DP;

Figure 231, Get highest salary in each department, use uncorrelated sub-query

Arguably, the first query above (i.e. the one using the RANK function) is the most elegant of
the series because it is the only statement where the basic predicates that define what rows
match are written once. With the two sub-query examples, these predicates have to be re-
peated, which can often lead to errors.

NOTE: If it seems at times that this chapter was written with a poison pen, it is because just
about now | had a"Microsoft moment" and my machine crashed. Needless to say, | had

OLAP Functions 83

Graeme Birchall ©

backups and, needless to say, they got trashed. It took me four days to get back to where |
was. Thanks Bill - may you rotin hell. / Graeme

Row Numbering Function

The ROW_NUMBER function lets one number the rows being returned. The result is of type
BIGINT. A syntax diagram follows. Observe that unlike with the ranking functions, the OR-
DER BY isnot required:

F ROW_NUMBER() — OVER(}

> , 8 >
L— PARTITION BY ipartitioning expression
>) >

. . asc option
L ORDER BY gordermg expression []
L desc option

Figure 232, Numbering Function syntax
ORDER BY Usage

Y ou don't have to provide an ORDER BY when using the ROW_NUMBER function, but not
doing so can be considered to be either brave or foolish, depending on one’s outlook on life.
Toillustrate this issue, consider the following query:

SELECT ID ANSWER
, NAME =================
,ROW_NUMBER() OVER () AS R1 ID NAME R1 R2
,ROW_NUMBER() OVER (ORDER BY ID) AS R2 = =—= =—===-=-—-- -= --
FROM STAFF 10 Sanders 1 1
WHERE ID < 50 20 Pernal 2 2
AND YEARS IS NOT NULL 30 Marenghi 3 3
ORDER BY ID; 40 O’'Brien 4 4

Figure 233, ORDER BY example, 1 of 3

In the above example, both ROW_NUMBER functions return the same set of values, which
happen to correspond to the sequence in which the rows are returned. In the next query, the
second ROW_NUMBER function purposely uses another sequence:

SELECT ID ANSWER
, NAME =================
,ROW_NUMBER() OVER () AS R1 ID NAME R1 R2
,ROW_NUMBER() OVER (ORDER BY NAME) AS R2 = -= =—=-=------ -= --
FROM STAFF 10 Sanders 4 4
WHERE ID < 50 20 Pernal 3 3
AND YEARS IS NOT NULL 30 Marenghi 2 2
ORDER BY ID; 40 O’'Brien 1 1

Figure 234, ORDER BY example, 2 of 3

Observe that changing the second function has had an impact on the first. Now lets see what
happens when we add another ROW_NUMBER function:

84 OLAP Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

SELECT ID ANSWER
, NAME ====================
,ROW_NUMBER () OVER() AS R1 ID NAME R1 R2 R3

,ROW:NUMBER() OVER (ORDER BY ID) AS R2 - mmmmmm-= - == -
,ROW_NUMBER () OVER (ORDER BY NAME) AS R3 10 Sanders 1 1 4

FROM STAFF 20 Pernal 2 2 3
WHERE ID < 50 30 Marenghi 3 3 1
AND YEARS IS NOT NULL 40 O’'Brien 4 4 2

ORDER BY 1ID;
Figure 235, ORDER BY example, 3 of 3

Observe that now the first function has reverted back to the origina sequence.

The lesson to be learnt here is that the ROW_NUMBER function, when not given an explicit
ORDER BY, may create avalue in any odd sequence. Usually, the sequence will reflect the
order in which the rows are returned - but not always.

PARTITION Usage

The PARTITION phrase |ets one number the matching rows by subsets of the rows returned.
In the following example, the rows are both ranked and numbered within each JOB:

SELECT JOB

, YEARS
, ID
, NAME
,ROW_NUMBER () OVER (PARTITION BY JOB
ORDER BY YEARS) AS ROW#
, RANK () OVER (PARTITION BY JOB
ORDER BY YEARS) AS RN1#
,DENSE_RANK () OVER (PARTITION BY JOB
ORDER BY YEARS) AS RN2#
FROM STAFF
WHERE ID < 150
AND YEARS 1IN (6,7) ANSWER
AND JOB > ILI S S S S S S S S S S S s EEEEEEEEEEEEE
ORDER BY JOB JOB YEARS ID NAME ROW# RN1# RN2#
,YEARS; mmmmm mmmmm mm mmmmmm el oo oo
Mgr 6 140 Fraye 1 1 1
Mgr 7 10 Sanders 2 2 2
Mgr 7 100 Plotz 3 2 2
Sales 6 40 O’Brien 1 1 1
Sales 6 90 Koonitz 2 1 1
Sales 7 70 Rothman 3 3 2

Figure 236, Use of PARTITION phrase

One problem with the above query is that the final ORDER BY that sequences the rows does
not identify aunique field (e.g. ID). Consequently, the rows can be returned in any sequence
within agiven JOB and Y EAR. Because the ORDER BY in the ROW_NUMBER function
also fails to identify a unique row, this means that there is no guarantee that a particular row
will always give the same row number.

For consistent results, ensure that both the ORDER BY phrase in the function call, and at the
end of the query, identify a unique row. And to always get the rows returned in the desired
row-number sequence, these phrases must be equal.

Selecting "n" Rows

To query the output of the ROW_NUMBER function, one has to make a nested temporary
table that contains the function expression. In the following example, this technique is used to
limit the query to the first three matching rows:

OLAP Functions 85

Graeme Birchall ©

SELECT * ANSWER
FROM (SELECT ID =============
, NAME ID NAME R
,ROW_NUMBER() OVER (ORDER BY ID) AS R - mmmm——-- -
FROM STAFF 10 Sanders 1
WHERE ID < 100 20 Pernal 2
AND YEARS IS NOT NULL 30 Marenghi 3
)AS XXX
WHERE R <= 3

ORDER BY ID;
Figure 237, Select first 3 rows, using ROW_NUMBER function

In the next query, the FETCH FIRST "n" ROWS notation is used to achieve the same resullt:

SELECT ID ANSWER
, NAME =============
,ROW_NUMBER () OVER (ORDER BY ID) AS R ID NAME R
FROM STAFF e —— -
WHERE ID < 100 10 Sanders 1
AND YEARS IS NOT NULL 20 Pernal 2
ORDER BY ID 30 Marenghi 3

FETCH FIRST 3 ROWS ONLY;
Figure 238, Sdlect first 3 rows, using FETCH FIRST notation

So far, the ROW_NUMBER and the FETCH FIRST notations seem to be about the same. But
the former technique is much more flexible. To illustrate, in the next query we retrieve the 3rd
through 6th matching rows:

SELECT * ANSWER
FROM (SELECT ID =============
, NAME ID NAME R
,ROW_NUMBER () OVER(ORDER BY ID) AS R - m—————-- -
FROM STAFF 30 Marenghi 3
WHERE ID < 200 40 O’'Brien 4
AND YEARS IS NOT NULL 50 Hanes 5
)AS XXX 70 Rothman 6

WHERE R BETWEEN 3 AND 6

ORDER BY ID;
Figure 239, Select 3rd through 6th rows

In the next query we get every 5th matching row - starting with the first:

SELECT * ANSWER
FROM (SELECT ID ==============
, NAME ID NAME R
,ROW_NUMBER() OVER (ORDER BY ID) AS R -——— - --
FROM STAFF 10 Sanders 1
WHERE ID < 200 70 Rothman 6
AND YEARS IS NOT NULL 140 Fraye 11
)AS XXX 190 Sneider 16

WHERE (R -1) = ((R-1) / 5) *5

ORDER BY 1ID;
Figure 240, Select every 5th matching row

In the next query we get the last two matching rows:

86 OLAP Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

SELECT *
FROM (SELECT ID
, NAME
,ROW_NUMBER () OVER (ORDER BY ID DESC) AS R
FROM STAFF
WHERE ID < 200
AND YEARS IS NOT NULL ANSWER
)AS XXX ==============
WHERE R <= 2 ID NAME R

ORDER BY ID; e mmm e -
180 Abrahams 2
190 Sneider 1

Figure 241, Select last two rows
Selecting "n" or more Rows

Imagine that one wants to fetch the first “n" rowsin aquery. Thisis easy to do, and has been
illustrated above. But imagine that one also wants to keep on fetching if the following rows
have the same value as the "nth".

In the next example, we will get the first three matching rows in the STAFF table, ordered by
years of service. However, if the 4th row, or any of the following rows, has the same Y EAR
as the 3rd row, then we also want to fetch them.

The query logic goes as follows:

e Select every matching row in the STAFF table, and give them all both a row-number and
aranking value. Both values are assigned according to the order of the final output. Put
the result into atemporary table - TEMPL.

¢ Query the TEMP1 table, getting the ranking of whatever row we want to stop fetching at.
In this case, it is the 3rd row. Put the result into atemporary table - TEMP2.

e Findly, join to the two temporary tables. Fetch those rowsin TEMP1 that have aranking
that islessthan or equal to the single row in TEMP2.
WITH

TEMP1 (YEARS, ID, NAME, RNK, ROW) AS
(SELECT YEARS

,ID
, NAME
, RANK () OVER (ORDER BY YEARS)
,ROW_NUMBER () OVER (ORDER BY YEARS, ID)
FROM STAFF
WHERE ID < 200

AND YEARS IS NOT NULL
),
TEMP2 (RNK) AS
(SELECT RNK
FROM TEMP1

WHERE ROW = 3 ANSWER

) B
SELECT TEMP1. * YEARS ID NAME RNK ROW
FROM TEMP1I mmmmm mmm —mmmm—-- —- - - -

, TEMP2 3 180 Abrahams 1 1
WHERE TEMP1.RNK <= TEMP2.RNK 4 170 Kermisch 2 2
ORDER BY YEARS 5 30 Marenghi 3 3

, ID; 5 110 Ngan 3 4

Figure 242, Select first "n" rows, or more if needed

Thetype of query illustrated above can be extremely useful in certain business situations. To
illustrate, imagine that one wants to give areward to the three employees that have worked
for the company the longest. Stopping the query that lists the lucky winners after three rows

OLAP Functions 87

Graeme Birchall ©

are fetched can get oneinto alot of troubleif it happens that there are more than three em-
ployees that have worked for the company for the same number of years.

Selecting "n" Rows - Efficiently

Sometimes, one only wants to fetch the first "n" rows, where "n" is small, but the number of
matching rowsis extremely large. In this section, we will discus how to obtain these "n" rows
efficiently, which means that we will try to fetch just them without having to process any of
the many other matching rows.

Below is a sample invoice table. Observe that we have defined the INV# field as the primary
key, which means that DB2 will build a unique index on this column:

CREATE TABLE INVOICE

(INV# INTEGER NOT NULL
, CUSTOMER# INTEGER NOT NULL
,SALE_DATE DATE NOT NULL
,SALE_VALUE DECIMAL(9,2) NOT NULL

, CONSTRAINT CTX1 PRIMARY KEY (INV#)
, CONSTRAINT CTX2 CHECK(INV# >= 0));

Figure 243, Performance test table - definition
The next SQL statement will insert 100,000 rows into the above table. After the rows were
inserted, RUNSTATS was run, so the optimizer could choose the best access path.

INSERT INTO INVOICE
WITH TEMP (N,M) AS

(VALUES (INTEGER (0) ,RAND (1))

UNION ALL

SELECT N+1, RAND()

FROM TEMP

WHERE N+1 < 100000

)

SELECT N AS INV#
,INT(M * 1000) AS CUSTOMER#
,DATE ('2000-11-01') + (M*40) DAYS AS SALE DATE
,DECIMAL((M * M * 100),8,2) AS SALE_VALUE

FROM TEMP;
Figure 244, Performance test table - insert 100,000 rows

Imagine we want to retrieve the first five rows (only) from the above table. Below are severa
queriesthat will get this result. For each query, for the elapsed time, as measured by the DB2
Event Monitor is provided.

Below we use the "FETCH FIRST n ROWS' notation to stop the query at the 5th row. This
query first did a tablespace scan, then sorted all 100,000 matching rows, and then fetched the
first five. It was not cheap:
SELECT S.*
,ROW_NUMBER() OVER () AS ROW#
FROM INVOICE S

ORDER BY INV#
FETCH FIRST 5 ROWS ONLY;

Figure 245, Fetch first 5 rows - 2.837 elapsed seconds

The next query is essentialy the same as the prior, but this time we told DB2 to optimize the
query for fetching five rows. Now one would think that the optimizer would already know
this, but it evidently did not. This query used the INV# index to retrieve the rows without
sorting. It stopped processing at the 5th row. Observe that it was amost a thousand times
faster than the prior example:

88 OLAP Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

SELECT S.*
,ROW_NUMBER () OVER() AS ROW#
FROM INVOICE S
ORDER BY INV#
FETCH FIRST 5 ROWS ONLY
OPTIMIZE FOR 5 ROWS;

Figure 246, Fetch first 5 rows - 0.003 elapsed seconds

The next query uses the ROW_NUMBER function to sequence the rows. Subsequently, only
those rows with a row-number less than or equal to five are retrieved. DB2 answers this query
using a single hon-matching index scan of the whole table. No temporary table is used, and
nor isasort done, but the query is not exactly cheap

SELECT *
FROM (SELECT S.*
,ROW_NUMBER () OVER() AS ROW#
FROM INVOICE S
) XXX
WHERE ROWH# <= 5

ORDER BY INV#;
Figure 247, Fetch first 5 rows - 0.691 elapsed seconds

At about this point, almost any halfway-competent idiot would conclude that the best way to
make the above query run faster is to add the same "OPTIMIZE FOR 5 ROWS" notation that
did wondersin the prior example. So we did (see below), but the access path remained the
same, and the query now ran significantly slower:

SELECT *
FROM (SELECT S.*
,ROW_NUMBER () OVER() AS ROW#
FROM INVOICE S
) XXX
WHERE ROWH# <= 5

ORDER BY INV#
OPTIMIZE FOR 5 ROWS;

Figure 248, Fetch first 5 rows - 2.363 elapsed seconds

One can also use recursion to get the first "n" rows. One begins by getting the first matching
row, and then one uses that row to get the next, and then the next, and so on (in arecursive
join), until the required number of rows has been obtained.

In the following example, we start by getting the row with the MIN invoice-number. This row
isthen joined to the row with the next to lowest invoice-number, which is then joined to the
next, and so on. After five such joins, the cycle is stopped and the result is sel ected:

OLAP Functions 89

Graeme Birchall ©

WITH TEMP (INV#, C#, SD, SV, N) AS
(SELECT INV.*
,1
FROM INVOICE INV
WHERE INV# =
(SELECT MIN (INV#)
FROM INVOICE)
UNION ALL
SELECT NEW.*, N + 1
FROM TEMP OLD
, INVOICE NEW
WHERE OLD.INV# < NEW.INV#
AND OLD.N < 5
AND NEW.INV# =
(SELECT MIN (XXX.INV#)
FROM INVOICE XXX
WHERE XXX.INV# > OLD.INV#)

)
SELECT *
FROM TEMP;

Figure 249, Fetch first 5 rows - 0.005 elapsed seconds

The above techniqueis nice to know, but it will have few practical uses, because it has sev-
eral mgjor disadvantages:

e [tisnot exactly easy to understand.

e Itrequiresall primary predicates (e.g. get only those rows where the sale-value is greater
than $10,000, and the sale-date greater than last month) to be repeated four times. In the
above example there are none, which is unusua in the real world.

e |t quickly becomes both very complicated and quite inefficient when the sequencing
value is made up of multiple fields. In the above example, we sequenced by the INV#
column, but imagine if we had used the sale-date, sale-value, and customer-number.

o Itisextremely vulnerable to inefficient access paths. For example, if instead of joining
from one (indexed) invoice-number to the next, we joined from one (non-indexed) cus-
tomer-number to the next, the query would run forever.

In conclusion, in this section we have illustrated how minor changes to the SQL syntax can
cause magjor changesin query performance. But to illustrate this phenomenon, we used a set
of queries with 100,000 matching rows. In situations where there are far fewer matching
rows, one can reasonably assume that this problem is not an issue.

Aggregation Function

The various aggregation functions let one do cute things like get cumulative totals or running
averages. In some ways, they can be considered to be extensions of the existing DB2 column
functions. The output type is dependent upon the input type.

90 OLAP Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

—— column-function OVER()
4 —T <

OVER(}

L PARTITION BY ipartitioning expression JJ

’ asc option
F ORDER BY £ordering expression []) *{

desc option — }
}—[ROWS UNBOUNDED PRECEDING —) 4
RANGE unsigned-constant PRECEDING |

CURRENT ROW

BETWEEN UNBOUNDED PRECEDING
unsigned-constant PRECEDING —
unsigned-constant FOLLOWING __|
CURRENT ROW

F AND UNBOUNDED FOLLOWING) 4
unsigned-constant PRECEDING —

unsigned-constant FOLLOWING __|
CURRENT ROW

Figure 250, Aggregation Function syntax

Syntax Notes

Guess what - thisis a complicated function. Be aware of the following:

OLAP Functions

Any DB2 column function (e.g. AVG, SUM, COUNT) can use the aggregation function.

The OVER() usage aggregates al of the matching rows. Thisis equivalent to getting the
current row, and also applying a column function (e.g. MAX, SUM) against al of the
matching rows (see page 92).

The PARTITION phrase limits any aggregation to a subset of the matching rows.

The ORDER BY phrase has two purposes; It defines a set of values to do aggregations
on. Each distinct value gets a new result. It also defines adirection for the aggregation
function processing - either ascending or descending (see page 93).

An ORDER BY phraseisrequired if the aggregation is confined to a set of rows or range
of values. In addition, if aRANGE is used, then the ORDER BY expression must be a
single value that allows subtraction.

If an ORDER BY phraseis provided, but neither a RANGE nor ROWS is specified, then
the aggregation is done from the first row to the current row.

The ROWS phrase limits the aggregation result to a set of rows - defined relative to the
current row being processed. The applicable rows can either be already processed (i.e.
preceding) or not yet processed (i.e. following), or both (see page 94).

91

Graeme Birchall ©

o The RANGE phrase limits the aggregation result to a range of values - defined relative to
the value of the current row being processed. The range is calculated by taking the value
in the current row (defined by the ORDER BY phrase) and adding to and/or subtracting
from it, then seeing what other rows are in the range. For this reason, when RANGE is
used, only one expression can be specified in the aggregation function ORDER BY, and
the expression must be numeric (see page 97).

e Preceding rows have already been fetched. Thus, the phrase "ROWS 3 PRECEDING"
refers to the 3 preceding rows - plus the current row. The phrase "UNBOUNDED
PRECEDING" refersto all those rows (in the partition) that have already been fetched,
plus the current one.

¢ Following rows have yet to be fetched. The phrase "UNBOUNDED FOLLOWING" re-
fersto all those rows (in the partition) that have yet to be fetched, plus the current one.

e Thephrase CURRENT ROW refers to the current row. It is equivalent to getting zero
preceding and following rows.

o |f either aROWS or aRANGE phraseis used, but no BETWEEN is provided, then one
must provide a starting point for the aggregation (e.g. ROWS 1 PRECEDING). The start-
ing point must either precede or equal the current row - it cannot follow it. The implied
end point isthe current row.

e When using the BETWEEN phrase, put the "low" value in the first check and the "high"
value in the second check. Thus one can go from the 1 PRECEDING to the CURRENT
ROW, or from the CURRENT ROW to 1 FOLLOWING, but not the other way round.

e The set of rowsthat match the BETWEEN phrase differ depending upon whether the
aggregation function ORDER BY is ascending or descending.

Basic Usage

Initssimplest form, with just an "OVER()" phrase, an aggregation function works on all of
the matching rows, running the column function specified. Thus, one gets both the detailed
data, plus the SUM, or AV G, or whatever, of all the matching rows.

In the following example, five rows are selected from the STAFF table. Along with various
detailed fields, the query also gets sum summary data about the matching rows:

SELECT ID
, NAME
, SALARY
,SUM (SALARY) OVER() AS SUM_SAL
,AVG (SALARY) OVER() AS AVG SAL
,MIN (SALARY) OVER() AS MIN_ SAL
)
)

,MAX (SALARY) OVER() AS MAX SAL
, COUNT (*) OVER() AS #ROWS
FROM STAFF
WHERE ID < 60

ORDER BY ID;
Figure 251, Aggregation function, basic usage, SQL

Below isthe answer

92 OLAP Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

ID NAME SALARY SUM_SAL AVG_SAL MIN_ SAL MAX SAL #ROWS
10 Sanders 18357.50 92701.30 18540.26 17506.75 20659.80 5
20 Pernal 18171.25 92701.30 18540.26 17506.75 20659.80 5
30 Marenghi 17506.75 92701.30 18540.26 17506.75 20659.80 5
40 O’Brien 18006.00 92701.30 18540.26 17506.75 20659.80 5
50 Hanes 20659.80 92701.30 18540.26 17506.75 20659.80 5

Figure 252, Aggregation function, basic usage, Answer

It is possible to do exactly the same thing using old-fashioned SQL, but it is not so pretty:

WITH
TEMP1 (ID, NAME, SALARY) AS
(SELECT ID, NAME, SALARY
FROM STAFF
WHERE ID < 60
) I
TEMP2 (SUM_SAL, AVG SAL, MIN SAL, MAX SAL, #ROWS) AS
(SELECT SUM (SALARY)
,AVG (SALARY

)
,MIN (SALARY)
,MAX (SALARY)
, COUNT (*)
FROM TEMP1
)
SELECT *
FROM TEMP1
, TEMP2

ORDER BY ID;
Figure 253, Select detailed data, plus summary data

An aggregation function with just an "OVER()" phrase islogically equivalent to one that has
an ORDER BY on afield that has the same value for all matching rows. To illustrate, in the
following query, the four aggregation functions are all logically equivalent:

SELECT ID

, NAME

, SALARY

, SUM (SALARY) OVER () AS SUM1
SUM (SALARY) OVER (ORDER BY ID * 0) AS SUM2
, SUM (SALARY) OVER (ORDER BY ’'ABC’') AS SUM3
SUM (SALARY) OVER (ORDER BY ‘ABC’

RANGE BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING) AS SUM4
FROM STAFF
WHERE ID < 60
ORDER BY 1ID;

Figure 254, Logically equivalent aggregation functions, SQL
ID NAME SALARY SUM1 SUM2 SUM3 SUM4

10 Sanders 18357.50 92701.30 952701.30 952701.30 92701.30
20 Pernal 18171.25 92701.30 92701.30 92701.30 92701.30
30 Marenghi 17506.75 92701.30 92701.30 92701.30 92701.30
40 O’Brien 18006.00 92701.30 92701.30 92701.30 92701.30
50 Hanes 20659.80 92701.30 92701.30 92701.30 92701.30

Figure 255, Logically equivalent aggregation functions, Answer
ORDER BY Usage
The ORDER BY phrase has two main purposes.

e |t providesaset of valuesto do aggregations on. Each distinct value gets a new result.

e [t givesadirection to the aggregation function processing (i.e. ASC or DESC).

OLAP Functions 93

Graeme Birchall ©

In the next query, various aggregations are done on the DEPT field, which is not unique, and
on the DEPT and NAME fields combined, which are unique (for these rows). Both ascending
and descending aggregations are illustrated:

SELECT DEPT

, NAME
, SALARY
,SUM (SALARY) OVER (ORDER BY DEPT) AS SUM1
,SUM (SALARY) OVER (ORDER BY DEPT DESC) AS SUM2
,SUM (SALARY) OVER (ORDER BY DEPT, NAME) AS SUM3
,SUM (SALARY) OVER (ORDER BY DEPT DESC, NAME DESC) AS SUM4
, COUNT (*) OVER (ORDER BY DEPT) AS ROW1
, COUNT (*) OVER (ORDER BY DEPT, NAME) AS ROW2
FROM STAFF
WHERE ID < 60
ORDER BY DEPT
,NAME ;

Figure 256, Aggregation function, order by usage, SQL

The answer is below. Observe that the ascending fields sum or count up, while the descending
fields sum down. Also observe that each aggregation field gets a separate result for each new
set of rows, as defined in the ORDER BY phrase:

DEPT NAME SALARY SUM1 SUM2 SUM3 SUM4 ROW1l ROW2
15 Hanes 20659.80 20659.80 92701.30 20659.80 92701.30 1 1
20 Pernal 18171.25 57188.55 72041.50 38831.05 72041.50 3 2
20 Sanders 18357.50 57188.55 72041.50 57188.55 53870.25 3 3
38 Marenghi 17506.75 92701.30 35512.75 74695.30 35512.75 5 4
38 O’Brien 18006.00 92701.30 35512.75 92701.30 18006.00 5 5

Figure 257, Aggregation function, order by usage, Answer
ROWS Usage

The ROWS phrase can be used to limit the aggregation function to a subset of the matching
rows or distinct values. If no ROWS or RANGE phrase is provided, the aggregation is done
for al preceding rows, up to the current row. Likewise, if no BETWEEN phraseis provided,
the aggregation is done from the start-location given, up to the current row. In the following
query, all of the examples using the ROWS phrase are of this type:

SELECT DEPT

, NAME
, YEARS
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT)) AS D
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT, NAME)) AS DN
,SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT, NAME
ROWS UNBOUNDED PRECEDING))AS DNU
,SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT, NAME
ROWS 3 PRECEDING)) AS DN3
,SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT, NAME
ROWS 1 PRECEDING)) AS DN1
,SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT, NAME
ROWS 0 PRECEDING)) AS DNO
,SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT, NAME
ROWS CURRENT ROW)) AS DNC
,SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT DESC, NAME DESC
ROWS 1 PRECEDING)) AS DNX
FROM STAFF
WHERE ID < 100
AND YEARS IS NOT NULL
ORDER BY DEPT
,NAME ;

Figure 258, Sarting ROWSusage. Implied end is current row, SQL

94 OLAP Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

Below isthe answer. Observe that an aggregation starting at the current row, or including
zero proceeding rows, doesn't aggregate anything other than the current row:

DEPT NAME YEARS D DN DNU DN3 DN1 DNO DNC DNX
15 Hanes 10 17 10 10 10 10 10 10 17
15 Rothman 7 17 17 17 17 17 7 7 15
20 Pernal 8 32 25 25 25 15 8 8 15
20 Sanders 7 32 32 32 32 15 7 7 12
38 Marenghi 5 43 37 37 27 12 5 5 11
38 O’Brien 6 43 43 43 26 11 6 6 12
42 Koonitz 6 49 49 49 24 12 6 6 6

Figure 259, Sarting ROWS usage. Implied end is current row, Answer
BETWEEN Usage

In the next query, the BETWEEN phrase is used to explicitly define the start and end rows
that are used in the aggregation:

SELECT DEPT

, NAME

, YEARS

, SMALLINT (SUM(YEARS) OVER (ORDER BY DEPT, NAME)) As UC1
, SMALLINT (SUM(YEARS) OVER (ORDER BY DEPT, NAME

ROWS UNBOUNDED PRECEDING)) AS UC2

, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT, NAME
ROWS BETWEEN UNBOUNDED PRECEDING

AND CURRENT ROW)) AS UC3
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT, NAME
ROWS BETWEEN CURRENT ROW

AND CURRENT ROW)) AS CU1
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT, NAME
ROWS BETWEEN 1 PRECEDING

AND 1 FOLLOWING)) AS PF1
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT, NAME
ROWS BETWEEN 2 PRECEDING

AND 2 FOLLOWING)) AS PF2
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT, NAME
ROWS BETWEEN 3 PRECEDING

AND 3 FOLLOWING)) AS PF3
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT, NAME
ROWS BETWEEN CURRENT ROW

AND UNBOUNDED FOLLOWING)) AS CUl
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT, NAME

ROWS BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING)) AS UUl

FROM STAFF
WHERE ID < 100
AND YEARS IS NOT NULL
ORDER BY DEPT
, NAME ;

Figure 260, ROWS usage, with BETWEEN phrase, SQL
Now for the answer. Observe that the first three aggregation calls are logically equivalent:

DEPT NAME YEARS UCl1 UC2 ©UC3 CUl PF1 PF2 PF3 CUl1 UUl
15 Hanes 1 10 10 10 10 17 25 32 49 49
15 Rothman 17 17 17 7 25 32 37 39 49
20 Pernal 25 25 25 22 37 43 32 49

20 33 49 24 49
38 Marenghi 37 37 37 18 32 39 17 49
38 O’Brien 43 43 43 17 24 32 12 49

42 Koonitz 6 49 49 49 12 17 24 6 49
Figure 261, ROWS usage, with BETWEEN phrase, Answer

0
7
8
20 Sanders 7 32 32 32
5
6

[N EEN Iee)

OLAP Functions

Graeme Birchall ©

The BETWEEN predicate in an ordinary SQL statement is used to get those rows that have a
value between the specified low-value (given first) and the high value (given last). Thus the
predicate "BETWEEN 5 AND 10" may find rows, but the predicate "BETWEEN 10 AND 5"
will never find any.

The BETWEEN phrase in an aggregation function has asimilar usagein that it defines the set
of rows to be aggregated. But it differsin that the answer depends upon the function ORDER
BY sequence, and a non-match returns a null value, not no-rows.

Below is some sample SQL. Observe that the first two aggregations are ascending, while the
last two are descending:

SELECT ID
, NAME
,SMALLINT (SUM(ID) OVER(ORDER BY ID ASC
ROWS BETWEEN 1 PRECEDING
AND CURRENT ROW)) AS APC
,SMALLINT (SUM (ID) OVER (ORDER BY ID ASC
ROWS BETWEEN CURRENT ROW
AND 1 FOLLOWING)) AS ACF
, SMALLINT (SUM(ID) OVER(ORDER BY ID DESC
ROWS BETWEEN 1 PRECEDING
AND CURRENT ROW)) AS DPC
, SMALLINT (SUM(ID) OVER (ORDER BY ID DESC
ROWS BETWEEN CURRENT ROW
AND 1 FOLLOWING)) AS DCF

FROM STAFF
WHERE ID < 50
AND YEARS IS NOT NULL ANSWER

ORDER BY ID; ===========================

10 Sanders 10 30 30 10
20 Pernal 30 50 50 30
30 Marenghi 50 70 70 50
40 O’Brien 70 40 40 70

Figure 262, BETWEEN and ORDER BY usage

The following table illustrates the processing sequence in the above query. Each BETWEEN
is applied from left to right, while the rows are read either from left to right (ORDER BY ID
ASC) or right to left (ORDER BY ID DESC):

ASC ID (10,20,30,40)

READ ROWS, LEFT to RIGHT 1ST-ROW 2ND-ROW 3RD-ROW 4TH-ROW
1 PRECEDING to CURRENT ROW 10=10 10+20=30 20+30=40 30+40=70
CURRENT ROW to 1 FOLLOWING 10+20=30 20+30=50 30+40=70 40 =40

DESC ID (40,30,20,10)

READ ROWS, RIGHT to LEFT 1ST-ROW 2ND-ROW 3RD-ROW 4TH-ROW
1 PRECEDING to CURRENT ROW 20+10=30 30+20=50 40+30=70 40 =40
CURRENT ROW to 1 FOLLOWING 10 =10 20+10=30 30+20=50 40+30=70

NOTE: Preceding row is always on LEFT of current row.
Following row is always on RIGHT of current row.

Figure 263, Explanation of query

IMPORTANT: The BETWEEN predicate, when used in an ordinary SQL statement, is not
affected by the sequence of the input rows. But the BETWEEN phrase, when used in an ag-
gregation function, is affected by the input sequence.

96 OLAP Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

RANGE Usage

The RANGE phrase limits the aggregation result to arange of numeric values - defined rela-
tive to the value of the current row being processed. The range is obtained by taking the value
in the current row (defined by the ORDER BY expression) and adding to and/or subtracting
from it, then seeing what other rows are in the range. Note that only one expression can be
specified in the ORDER BY/, and that expression must be numeric.

In the following example, the RANGE function adds to and/or subtracts from the DEPT field.
For example, in the function that is used to populate the RG10 field, the current DEPT value
is checked against the preceding DEPT values. If their value is within 10 digits of the current
value, therelated YEARS field is added to the SUM:

SELECT DEPT
, NAME
, YEARS
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT
ROWS BETWEEN 1 PRECEDING
AND CURRENT ROW)) AS ROW1
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT
ROWS BETWEEN 2 PRECEDING
AND CURRENT ROW)) AS ROW2
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT
RANGE BETWEEN 1 PRECEDING
AND CURRENT ROW)) AS RGO1
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT
RANGE BETWEEN 10 PRECEDING
AND CURRENT ROW)) AS RG10
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT
RANGE BETWEEN 20 PRECEDING
AND CURRENT ROW)) AS RG20
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT
RANGE BETWEEN 10 PRECEDING
AND 20 FOLLOWING)) AS RG11
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT
RANGE BETWEEN CURRENT ROW
AND 20 FOLLOWING)) AS RG99
FROM STAFF
WHERE ID < 100
AND YEARS IS NOT NULL
ORDER BY DEPT
, NAME ;
Figure 264, RANGE usage, SQL
Now for the answer:
DEPT NAME YEARS ROW1 ROW2 RGO1 RG10 RG20 RG11 RG99
15 Hanes 10 10 10 17 17 17 32 32
15 Rothman 7 17 17 17 17 17 32 32
20 Pernal 8 15 25 15 32 32 43 26
20 Sanders 7 15 22 15 32 32 43 26
38 Marengh 5 12 20 11 11 26 17 17
38 O’Brien 6 11 18 11 11 26 17 17
42 Koonitz 6 12 17 6 17 17 17 6

Figure 265, RANGE usage, Answer
Note the difference between the ROWS as RANGE expressions:

e The ROWS expression refersto the "n" rows before and/or after (within the partition), as
defined by the ORDER BY .

e The RANGE expression refers to those before and/or after rows (within the partition) that
are within an arithmetic range of the current row.

OLAP Functions 97

Graeme Birchall ©

PARTITION Usage

One can take al of the lovely stuff described above, and make it whole lot more complicated
by using the PARTITION expression. This phrase limits the current processing of the aggre-
gation to a subset of the matching rows.

In the following query, some of the aggregation functions are broken up by partition range
and some are not. When there is a partition, then the ROWS check only works within the
range of the partition (i.e. for agiven DEPT):

SELECT DEPT

, NAME
, YEARS
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT)) AS X
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT
ROWS 3 PRECEDING)) AS XO3
, SMALLINT (SUM (YEARS) OVER (ORDER BY DEPT
ROWS BETWEEN 1 PRECEDING
AND 1 FOLLOWING)) AS X011
, SMALLINT (SUM (YEARS) OVER (PARTITION BY DEPT)) AS P
, SMALLINT (SUM (YEARS) OVER (PARTITION BY DEPT
ORDER BY DEPT)) AS PO
, SMALLINT (SUM (YEARS) OVER (PARTITION BY DEPT
ORDER BY DEPT
ROWS 1 PRECEDING)) AS PO1
, SMALLINT (SUM (YEARS) OVER (PARTITION BY DEPT
ORDER BY DEPT
ROWS 3 PRECEDING)) AS PO3
, SMALLINT (SUM (YEARS) OVER (PARTITION BY DEPT
ORDER BY DEPT
ROWS BETWEEN 1 PRECEDING
AND 1 FOLLOWING)) AS PO1l1l
FROM STAFF
WHERE ID BETWEEN 40 AND 120
AND YEARS IS NOT NULL
ORDER BY DEPT
, NAME ;
Figure 266, PARTITION usage, SQL
DEPT NAME YEARS X X03 X011 P PO PO1 PO3 PO11
15 Hanes 10 22 10 15 22 22 10 10 15
15 Ngan 5 22 15 22 22 22 15 15 22
15 Rothman 7 22 22 18 22 22 12 22 12
38 O’Brien 6 28 28 19 6 6 6 6 6
42 Koonitz 6 41 24 19 13 13 6 6 13
42 Plotz 7 41 26 13 13 13 13 13 13

Figure 267, PARTITION usage, Answer
PARTITION vs. GROUP BY

The PARTITION clause, when used by itself, returns avery similar result to a GROUP BY,
except that it does not remove the duplicate rows. To illustrate, below isasimple query that
doesa GROUPBY:

SELECT DEPT ANSWER
, SUM (YEARS) AS SUM ================
,AVG (YEARS) AS AVG DEPT SUM AVG ROW
, COUNT (*) AS ROW - === === ===
FROM STAFF 15 22 7 3
WHERE ID BETWEEN 40 AND 120 38 6 6 1
AND YEARS IS NOT NULL 42 13 6 2

GROUP BY DEPT;
Figure 268, Sample query using GROUP BY

98 OLAP Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

Below isasimilar query that uses the PARTITION phrase. Observe that the answer is the
same, except that duplicate rows have not been removed:

SELECT DEPT ANSWER
, SUM (YEARS) OVER(PARTITION BY DEPT) AS SUM ================

,AVG (YEARS) OVER (PARTITION BY DEPT) AS AVG DEPT SUM AVG ROW

, COUNT (*) OVER (PARTITION BY DEPT) AS ROW ----- --- --- --
FROM STAFF 15 22 7
WHERE ID BETWEEN 40 AND 120 15 22 7
AND YEARS IS NOT NULL 15 22 7
ORDER BY DEPT; 38 6 6
42 13 6
42 13 6

Figure 269, Sample query using PARTITION

Below is another similar query that uses the PARTITION phrase, and then uses a DISTINCT

clause to remove the duplicate rows:

SELECT DISTINCT DEPT ANSWER
,SUM (YEARS) OVER(PARTITION BY DEPT) AS SUM ================

,AVG (YEARS) OVER (PARTITION BY DEPT) AS AVG DEPT SUM AVG ROW

, COUNT (*) OVER (PARTITION BY DEPT) AS ROW ----- --- --- --
FROM STAFF 15 22 7
WHERE ID BETWEEN 40 AND 120 38 6 6
AND YEARS IS NOT NULL 42 13 6

ORDER BY DEPT;
Figure 270, Sample query using PARTITION and DISTINCT

Even though the above statement gives the same answer as the prior GROUP BY example, it

is not the sameinternally. Nor isit (probably) as efficient, and it certainly is not as easy to
understand. Therefore, when in doubt, use the GROUP BY syntax.

OLAP Functions

99

Graeme Birchall ©

100 OLAP Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

Scalar Functions

Introduction

Scalar functions act on asingle row at atime. In this section we shall list al of the ones that
come with DB2 and look in detail at some of the more interesting ones. Refer to the SQL
Reference for information on those functions not fully described here.

WARNING: Some of the scalar functions changed their internal logic between V5 and V6 of
DB2. There have been no changes between V6 and V7, or between V7 and V8, except for the
addition of afew more functions.

Sample Data

The following self-defined view will be used throughout this section to illustrate how some of
the following functions work. Observe that the view has aVALUES expression that defines
the contents- three rows and nine columns.

CREATE VIEW SCALAR (D1,F1,S81,C1,V1,TS1,DT1,TM1,TC1l) AS
WITH TEMP1 (N1, C1, T1) AS
(VALUES (-2.4,'ABCDEF’,’1996-04-22-23.58.58.123456")
,(+0.0,’ABCD ',’1996-08-15-15.15.15.151515")
,(+1.8,'AB ’,70001-01-01-00.00.00.000000"))
SELECT DECIMAL (N1,3,1)
,DOUBLE (N1)
, SMALLINT (N1)
,CHAR(C1,6)
, VARCHAR (RTRIM (C1) , 6)
, TIMESTAMP (T1)
,DATE (T1)
, TIME (T1)
, CHAR (T1)
FROM TEMP1 ;

Figure 271, Sample View DDL - Scalar functions

Below are the view contents:

D1 F1 S1 C1 Vi TS1
-2.4 -2.4e+000 -2 ABCDEF ABCDEF 1996-04-22-23.58.58.123456
0.0 0.0e+000 0 ABCD ABCD 1996-08-15-15.15.15.151515
1.8 1.8e+000 1 AB AB 0001-01-01-00.00.00.000000
DT1 TM1 TC1

04/22/1996 23:58:58 1996-04-22-23.58.58.123456
08/15/1996 15:15:15 1996-08-15-15.15.15.151515
01/01/0001 00:00:00 0001-01-01-00.00.00.000000

Figure 272, SCALAR view, contents (3 rows)

Scalar Functions, Definitions

ABS or ABSVAL

Returns the absolute value of a number (e.g. -0.4 returns + 0.4). The output field type will
equal the input field type (i.e. double input returns double output).

Scalar Functions 101

Graeme Birchall ©

SELECT D1 AS D1 ANSWER (float output shortened)
,ABS (Dl) AS D2 === ===S====S=S=S=S=S====S==========
,F1 AS F1 D1 D2 F1 F2
,ABS (F1) AS F2 - S
FROM SCALAR; -2.4 -2.400e+0 2.400e+00

2.4
0.0 0.0 0.000e+0 0.000e+00
1.8 1.800e+0 1.800e+00

Figure 273, ABS function examples

ACOS

Returns the arccosine of the argument as an angle expressed in radians. The output format is
double.

ASCII

Returns the ASCII code value of the leftmost input character. Valid input types are any valid
character type up to 1 MEG. The output typeisinteger.

SELECT C1 ANSWER
,ASCII(C1) AS AC1 ================
,ASCII (SUBSTR(C1,2)) AS AC2 C1 AC1 AC2

FROM SCALAR e _——— ---

WHERE C1 = ’'ABCDEF’; ABCDEF 65 66

Figure 274, ASCI| function examples
The CHR function is the inverse of the ASCII function.

ASIN

Returns the arcsine of the argument as an angle expressed in radians. The output format is
double.

ATAN

Returns the arctangent of the argument as an angle expressed in radians. The output format is
double.

ATANH

Returns the hyperbolic acrctangent of the argument, where the argument is and an angle ex-
pressed in radians. The output format is double.

ATAN2

Returns the arctangent of x and y coordinates, specified by the first and second arguments, as
an angle, expressed in radians. The output format is double.

BIGINT

Convertsthe input value to bigint (big integer) format. The input can be either numeric or
character. If character, it must be a valid representation of a number.

102 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

WITH TEMP

(BIG) AS

(VALUES BIGINT (1)
UNION ALL
SELECT BIG * 256

FROM

TEMP

WHERE BIG < 1E16

)

SELECT BIG

FROM

TEMP;

Figure 275, BIGINT function example

167

42949
10995116
2814749767
720575940379

65536
77216
67296
27776
10656
27936

Converting certain float values to both bigint and decimal will result in different values being
returned (see below). Both results are arguably correct, it is simply that the two functions use
different rounding methods:

WITH TEMP

(F1) AS

(VALUES FLOAT (1.23456789)
UNION ALL
SELECT F1 * 100

FROM TEMP
WHERE F1l < 1E18

)

SELECT F1 AS FLOAT1
,DEC(F1,19) AS DECIMALL
,BIGINT (F1) AS BIGINT1

FROM TEMP;

Figure 276, Convert FLOAT to DECIMAL and BIGINT, SQL

FLOAT1

.23456789000000E+000
.23456789000000E+002
.23456789000000E+004
.23456789000000E+006
.23456789000000E+008
.23456789000000E+010
.23456789000000E+012
.23456789000000E+014
.23456789000000E+016
+1.

23456789000000E+018

DECIMAL1

123.

12345.

1234567.

123456789.
12345678900.
1234567890000.
123456789000000.
12345678900000000.
1234567890000000000.

BIGINT1

123

12345

1234567

123456788
12345678899
1234567889999
123456788999999
12345678899999996
1234567889999999488

Figure 277, Convert FLOAT to DECIMAL and BIGINT, answer

See page 329 for a discussion on floating-point number manipulation.

BLOB
Convertsthe input (1st argument) to a blob. The output length (2nd argument) is optional.

F BLOB (—— string-expression

)

L

, length

]

Figure 278, BLOB function syntax

CEIL or CEILING

Returns the next smallest integer value that is greater than or equal to the input (e.g. 5.045
returns 6.000). The output field type will equal the input field type.

4

F CEIL or CEILING (—— numeric-expression ——)
Figure 279, CEILING function syntax

Scalar Functions

4

103

Graeme Birchall ©

SELECT D1 ANSWER (float output shortened)
,CEIL(D1) AS D2 R T T LRy
,F1 D1 D2 F1 F2
,CEIL(F1) AS F2 —m-- mmmm mmmmmmm--m mmm——m— oo
FROM SCALAR; -2.4 -2. -2.400E+0 -2.000E+0
0.0 0. +0.000E+0 +0.000E+0
1.8 2. +1.800E+0 +2.000E+0

Figure 280, CEIL function examples

NOTE: Usually, when DB2 converts a number from one format to another, any extra digits
on the right are truncated, not rounded. For example, the output of INTEGER(123.9) is 123.
Usethe CEIL or ROUND functions to avoid truncation.

CHAR

The CHAR function has amultiplicity of uses. The result is always a fixed-length character
value, but what happens to the input along the way depends upon the input type:

e For character input, the CHAR function acts a bit like the SUBSTR function, except that
it can only truncate starting from the left-most character. The optional length parameter,
if provided, must be a constant or keyword.

e Date-timeinput is converted into an equivalent character string. Optionally, the external
format can be explicitly specified (i.e. 1ISO, USA, EUR, JIS, or LOCAL).

¢ Integer and doubleinput is converted into a left-justified character string.

e Decimal input is converted into aright-justified character string with leading zeros. The
format of the decimal point can optionally be provided. The default decimal pointisa
dot. The'+' and -’ symbols are not allowed as they are used as sign indicators.

Below isasyntax diagram:

D CHAR(

character value

L , length J) }
L , format J

date-time value

integer value

double value

decimal value L dec.pt J

Figure 281, CHAR function syntax

Below are some examples of the CHAR function in action:

SELECT NAME ANSWER

, CHAR (NAME, 3) =====================================

, COMM NAME 2 COMM 4 5

,CHAR (COMM) mmmmmme mmm e e o

, CHAR (COMM, '@") James Jam 128.20 00128.20 00128@20
FROM STAFF Koonitz Koo 1386.70 01386.70 01386@70
WHERE ID BETWEEN 80 Plotz Plo - - -

AND 100

ORDER BY ID;
Figure 282, CHAR function examples - characters and numbers

The CHAR function treats decimal numbers quite differently from integer and real numbers.
In particular, it right-justifies the former (with leading zeros), while it left-justifies the latter
(with trailing blanks). The next example illustrates this point:

104 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

ANSWER
INT CHAR INT CHAR_FLT CHAR DEC
WITH TEMP1 (N) AS 33 3.0E0 00000000003.
(VALUES (3) 9 9 9.0EQ0 00000000009.
UNION ALL 81 81 8.1E1 00000000081.
SELECT N * N 6561 6561 6.561E3 00000006561.
FROM TEMP1 43046721 43046721 4.3046721E7 00043046721.
WHERE N < 9000
)
SELECT N AS INT
, CHAR (INT(N)) AS CHAR_ INT
,CHAR (FLOAT (N)) AS CHAR_FLT
, CHAR (DEC(N)) AS CHAR DEC

FROM TEMP1;
Figure 283, CHAR function examples - positive numbers

Negative numeric input is given aleading minus sign. This messes up the alignment of digits
in the column (relative to any positive values). In the following query, aleading blank is put
in front of all positive numbersin order to realign everything:

WITH TEMP1 (N1, N2) AS ANSWER
(VALUES (SMALLINT (+3) ==================S================

, SMALLINT (-7)) N1 I1 I2 D1 D2
UNION ALL mmms-- mmmm- mmmmm- ————--- —————--
SELECT N1 * N2 33 +3 00003. +00003.

, N2 -21 -21 -21 -00021. -00021.
FROM TEMP1 147 147 +147 00147. +00147.
WHERE N1 < 300 -1029 -1029 -1029 -01029. -01029.
) 7203 7203 +7203 07203. +07203.
SELECT N1

,CHAR (N1) AS I1

, CASE

WHEN N1 < 0 THEN CHAR (N1)
ELSE '+’ CONCAT CHAR (N1)
END AS I2
,CHAR (DEC (N1)) AS D1
, CASE
WHEN N1 < 0 THEN CHAR (DEC(N1))
ELSE '+’ CONCAT CHAR (DEC(N1))
END AS D2
FROM TEMP1 ;

Figure 284, Align CHAR function output - numbers

Both the 12 and D2 fields above will have atrailing blank on al negative values - that was
added during the concatenation operation. The RTRIM function can be used to removeit.

SELECT CHAR (HIREDATE, ISO) ANSWER
, CHAR (HIREDATE, USA) —===============================
, CHAR (HIREDATE, EUR) 1 2 3
FROM EMPLOYEE el oo oo
WHERE LASTNAME < ’C’ 1972-02-12 02/12/1972 12.02.1972
ORDER BY 2; 1966-03-03 03/03/1966 03.03.1966

Figure 285, CHAR function examples - dates

WARNING: Observe that the above dataisin day, month, and year (2nd column) order. Had
the ORDER BY been on the 1st column (with the ISO output format), the row sequencing
would have been different.

CHAR vs. DIGITS - A Comparison

Numeric input can be converted to character using either the DIGITS or the CHAR function,
though the former does not support float. Both functions work differently, and neither gives

Scalar Functions 105

Graeme Birchall ©

perfect output. The CHAR function doesn't properly align up positive and negative numbers,
while the DIGITS function looses both the decimal point and sign indicator:

SELECT D2 ANSWER
, CHAR (D2) AS CD2 ================
,DIGITS (D2) AS DD2 D2 CD2 DD2
FROM (SELECT DEC(D1,4,1) AS D2 === = —————— -
FROM SCALAR -2.4 -002.4 0024
)AS XXX 0.0 000.0 0000
ORDER BY 1; 1.8 001.8 0018

Figure 286, DIGITSvs. CHAR

NOTE: Neither the DIGITS nor the CHAR function do a great job of converting numbersto
characters. See page 300 for some user-defined functions that can be used instead.

CHR

Convertsinteger input in the range 0 through 255 to the equivalent ASCII character value. An
input value above 255 returns 255. The ASCI| function (see above) isthe inverse of the CHR
function.

SELECT 'A’ AS "C" ANSWER
,ASCII('A’) AS "C>N" =================
,CHR (ASCII('A’)) AS "C>N>C" C C>N C>N>C NL
, CHR (333) AS "NL" - --- - --

FROM STAFF A 65 A ¥

WHERE ID = 10;
Figure 287, CHR function examples

NOTE: At present, the CHR function has a bug that resultsin it not returning a null value
when the input value is greater than 255.

CLOB

Convertsthe input (1st argument) to a clob. The output length (2nd argument) is optional. If
the input is truncated during conversion, awarning message is issued. For example, in the
following example the second clob statement will induce awarning for the first two lines of
input because they have non-blank data after the third byte:

SELECT C1 ANSWER
,CLOB (C1) AS CC1l ===================
,CLOB(C1,3) AS CC2 C1 CC1 cc2

FROM SCALAR; . mmmmes mmmm e -
ABCDEF ABCDEF ABC
ABCD ABCD ABC
AB AB AB

Figure 288, CLOB function examples

NOTE: At present, the DB2BATCH command processor dies a nasty death whenever it en-
counters a clob field in the output.

COALESCE

Returns the first non-null valuein alist of input expressions (reading from left to right). Each
expression is separated from the prior by acomma. All input expressions must be compatible.
VALUE isasynonym for COALESCE.

106 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

SELECT ID ANSWER
, COMM S
, COALESCE (COMM, 0) ID COMM 3

FROM STAFF cemmmeee oo

WHERE ID < 30 10 . 0.00

ORDER BY ID; 20 612.45 612.45

Figure 289, COALESCE function example

A CASE expression can be written to do exactly the same thing as the COALESCE function.
The following SQL statement shows two logically equivalent ways to replace nulls:

WITH TEMP1 (C1l,C2,C3) AS ANSWER

(VALUES (CAST (NULL AS SMALLINT) S

,CAST (NULL AS SMALLINT) cCcl ce2

,CAST (10 AS SMALLINT))) --— ===

SELECT COALESCE (C1,C2,C3) AS CC1 10 10
, CASE

WHEN C1 IS NOT NULL THEN C1
WHEN C2 IS NOT NULL THEN C2
WHEN C3 IS NOT NULL THEN C3
END AS CC2
FROM TEMP1;

Figure 290, COALESCE and equivalent CASE expression

Be awarethat afield can return anull value, even when it is defined as not null. This occursiif
a column function is applied against the field, and no row is returned:

SELECT COUNT (*) AS #ROWS ANSWER
,MIN(ID) AS MIN_ID ===================
, COALESCE (MIN(ID),-1) AS CCC_ID #ROWS MIN ID CCC_ID
FROM STAFF T LT LT
WHERE 1ID < 5; 0 - -1

Figure 291, NOT NULL field returning null value

CONCAT

Joins two strings together. The CONCAT function has both "infix" and "prefix" notations. In
the former case, the verb is placed between the two strings to be acted upon. In the latter case,
the two strings come after the verb. Both syntax flavours are illustrated below:

SELECT ‘A" || B’ ANSWER
, A’ CONCAT 'B’ ===================
,CONCAT ('A’,"B") 1 2 3 4 5
AT | B || re S e mmm oo -
, CONCAT (CONCAT ('A’,'B’),'C’) AB AB AB ABC ABC

FROM STAFF

WHERE ID = 10;

Figure 292, CONCAT function examples

Note that the "||" keyword can not be used with the prefix notation. This meansthat "||(’a,’b)"
isnot valid while "CONCAT('a,’b)" is.

Using CONCAT with ORDER BY

When ordinary character fields are concatenated, any blanks at the end of the first field are
left in place. By contrast, concatenating varchar fields removes any (implied) trailing blanks.
If the result of the second type of concatenation is then used in an ORDER BY, the resulting
row sequence will probably be not what the user intended. To illustrate:

Scalar Functions 107

Graeme Birchall ©

WITH TEMP1 (COL1, COL2) AS ANSWER

(VALUES (A", TYYY') s==============
, ("AE’, '000’) COL1 COL2 COL3
, ("AE', "YYY’) e

) AE 000 AEOQO

SELECT COL1 AE YYY AEYYY
, COL2 A YYY AYYY
,COL1 CONCAT COL2 AS COL3

FROM TEMP1

ORDER BY COL3;
Figure 293, CONCAT used with ORDER BY - wrong output sequence

Converting the fields being concatenated to character gets around this problem:

WITH TEMP1 (COL1, COL2) AS ANSWER

(VALUES (A", 'YYY') ===============
, ("AE’, ’000") COL1 COL2 COL3
, ("AE’, 'YYY’) T pp——

) A YYY A YYY

SELECT COL1 AE 000 AEO0O
, COL2 AE YYY AEYYY

, CHAR (COL1,2) CONCAT
CHAR (COL2,3) AS COL3
FROM TEMP1
ORDER BY COL3;

Figure 294, CONCAT used with ORDER BY - correct output sequence

WARNING: Never do an ORDER BY on a concatenated set of variable length fields. The
resulting row sequence is probably not what the user intended (see above).

COS

Returns the cosine of the argument where the argument is an angle expressed in radians. The
output format is double.

WITH TEMP1 (N1) AS ANSWER

(VALUES (0) =======================

UNION ALL N1 RAN COos SIN
SELECT N1 + 10 = mmmmm mmmmm -
FROM TEMP1 0O 0.000 1.000 ©0.000
WHERE N1 < 90) 10 0.174 0.984 0.173
SELECT N1 20 0.349 0.939 0.342
,DEC (RADIANS (N1),4,3) AS RAN 30 0.523 0.866 0.500
,DEC (COS (RADIANS (N1)),4,3) AS COS 40 0.698 0.766 0.642
,DEC (SIN (RADIANS(N1)),4,3) AS SIN 50 0.872 0.642 0.766
FROM TEMP1; 60 1.047 0.500 0.866
70 1.221 0.342 0.939
80 1.396 0.173 0.984
90 1.570 0.000 1.000

Figure 295, RADIAN, COS, and SIN functions example

COSH

Returns the hyperbolic cosine for the argument, where the argument is an angle expressed in
radians. The output format is double.

COoT

Returns the cotangent of the argument where the argument is an angle expressed in radians.
The output format is double.

108 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

DATE

Convertsthe input into a date value. The nature of the conversion process depends upon the
input type and length:

e Timestamp and date input have the date part extracted.

e Char or varchar input that isavalid string representation of a date or atimestamp (e.g.
"1997-12-23") is converted asis.

e Char or varchar input that is seven byteslong is assumed to be a Julian date value in the
format yyyynnn where yyyy is the year and nnn is the number of days since the start of
the year (in the range 001 to 366).

o Numeric input is assumed to have a value which represents the number of days since the
date "0001-01-01" inclusive. All numeric types are supported, but the fractional part of a
valueisignored (e.g. 12.55 becomes 12 which converts to "0001-01-12").

F DATE (—— expression —) }

Figure 296, DATE function syntax

If the input can be null, the output will also support null. Null values convert to null output.

SELECT TS1 ANSWER
,DATE (TS1) AS DT1 e
FROM SCALAR; TS1 DT1

1996-04-22-23.58.58.123456 04/22/1996
1996-08-15-15.15.15.151515 08/15/1996
0001-01-01-00.00.00.000000 01/01/0001

Figure 297, DATE function example - timestamp input

WITH TEMP1 (N1) AS ANSWER
(VALUES (000001) ===================
, (728000) N1 D1
, (730120)) emmmee e e
SELECT N1 1 01/01/0001
,DATE (N1) AS D1 728000 03/13/1994
FROM TEMP1; 730120 01/01/2000

Figure 298, DATE function example - numeric input

DAY

Returns the day (asin day of the month) part of a date (or equivaent) value. The output for-
mat is integer.

SELECT DT1 ANSWER
,DAY (DT1) AS DAY1l ================
FROM SCALAR DT1 DAY1
WHERE DAY (DT1) > 10; —emmmmmmo - B—
04/22/1996 22
08/15/1996 15

Figure 299, DAY function examples

If the input is adate or timestamp, the day value must be between 1 and 31. If theinputisa
date or timestamp duration, the day value can ran from -99 to +99, though only -31 to +31
actually make any sense:

Scalar Functions 109

Graeme Birchall ©

SELECT DT1 ANSWER
,DAY (DT1) AS DAY1 ==============—==—=========
,DT1 -'1996-04-30" AS DUR2 DT1 DAY1 DUR2 DAY2
,DAY (DT1 -’1996-04-30') AS DAY2 = =—=----==m-= ——-n ——me ———o
FROM SCALAR 04/22/1996 22 -8. -8
WHERE DAY (DT1) > 10 08/15/1996 15 315. 15

ORDER BY DT1;
Figure 300, DAY function, using date-duration input

NOTE: A date-duration is what one gets when one subtracts one date from another. The field
is of type decimal(8), but the value is not really a number. It has digitsin the format:
YYYYMMDD, soin the above query the value "315" represents 3 months, 15 days.

DAYNAME

Returns the name of the day (e.g. Friday) as contained in a date (or equivalent) value. The
output format is varchar(100).

SELECT DT1 ANSWER
, DAYNAME (DT1) AS DY1 ========================
, LENGTH (DAYNAME (DT1)) AS DY2 DT1 DY1 DY2
FROM SCALAR emmmmee e aeme o ---
WHERE DAYNAME (DT1) LIKE ’'%a%y’ 01/01/0001 Monday 6
ORDER BY DT1; 04/22/1996 Monday 6

08/15/1996 Thursday 8
Figure 301, DAYNAME function example

DAYOFWEEK

Returns a number that represents the day of the week (where Sunday is 1 and Saturday is 7)
from adate (or equivalent) value. The output format is integer.

SELECT DT1 ANSWER
,DAYOFWEEK (DT1) AS DWK =========================
, DAYNAME (DT1) AS DNM DT1 DWK DNM
FROM SCALAR e e e m e -—— -
ORDER BY DWK 01/01/0001 2 Monday
, DNM ; 04/22/1996 2 Monday
08/15/1996 5 Thursday

Figure 302, DAYOFWEEK function example

DAYOFWEEK_ISO

Returns an integer value that represents the day of the "ISO" week. An SO week differs from
an ordinary week in that it begins on aMonday (i.e. day-number = 1) and it neither ends nor
begins at the exact end of the year. Instead, the final 1SO week of the prior year will continue
into the new year. This often means that the first days of the year have an 1SO week number
of 52, and that one gets more than seven daysin a year for 1SO week 52.

110 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

WITH

TEMP1 (N) AS
(VALUES (0)
UNION ALL
SELECT N+1
FROM TEMP1
WHERE N < 9),

TEMP2 (DT1) AS

(VALUES (DATE ('1999-12-25"))
, (DATE (' 2000-12-24"))),

TEMP3 (DT2) AS
(SELECT DT1 + N DAYS
FROM TEMP1
, TEMP2)
SELECT CHAR (DT2, ISO) AS DATE
, SUBSTR (DAYNAME (DT2) ,1,3) AS DAY
, WEEK (DT2) AS W
, DAYOFWEEK (DT2) AS D
,WEEK_ISO(DT2) AS WI
,DAYOFWEEK ISO (DT2) AS I
FROM TEMP3
ORDER BY 1;

Figure 303, DAYOFWEEK _|1SO function example

DAYOFYEAR

1999-12-25 Sat 52
1999-12-26 Sun 53
1999-12-27 Mon 53
1999-12-28 Tue 53
1999-12-29 Wed 53
1999-12-30 Thu 53
1999-12-31 Fri 53
2000-01-01 sat 1
2000-01-02 Sun 2
2000-01-03 Mon 2
2000-12-24 Sun 53
2000-12-25 Mon 53
2000-12-26 Tue 53
2000-12-27 Wed 53
2000-12-28 Thu 53
2000-12-29 Fri 53
2000-12-30 Sat 53
2000-12-31 Sun 54
2001-01-01 Mon 1
2001-01-02 Tue 1

WNhRJOOUuUPWNDRHENMREJOOUOURPWNDRI 1 O

=
NFEFJOUPRPWNREdIRPRJOOUOPMWNEION T H

Returns a number that is the day of the year (from 1 to 366) from a date (or equivalent) value.

The output format is integer.

SELECT DT1

,DAYOFYEAR (DT1) AS DYR
FROM SCALAR
ORDER BY DYR;

Figure 304, DAYOFYEAR function example

DAYS

01/01/0001
04/22/1996
08/15/1996

113
228

Converts adate (or equivalent) value into a number that represents the number of days since
the date "0001-01-01" inclusive. The output format is INTEGER.

SELECT DT1
,DAYS (DT1) AS DY1

FROM SCALAR
ORDER BY DY1
,DT1;

Figure 305, DAYS function example

ANSWER

DT1 DY1
01/01/0001 1
04/22/1996 728771
08/15/1996 728886

The DATE function can act as the inverse of the DAY S function. It can convert the DAY S

output back into avalid date.

DBCLOB

Convertsthe input (1st argument) to a dbclob. The output length (2nd argument) is optional.

Scalar Functions

111

Graeme Birchall ©

DEC or DECIMAL

Converts either character or numeric input to decimal. When the input is of type character, the
decimal point format can be specified.

>—[DECIMAL (— number)
DEC L , precision ‘ }
L , scale J
(—char)
L , precision ‘
- scale ——]
dec

Figure 306, DECIMAL function syntax

WITH TEMP1 (N1,N2,C1,C2) AS ANSWER
(VALUES (123 ==========================
, 1E2 DEC1 DEC2 DEC3 DEC4
, 123,47 mmmmm mmmm i mmmmmm — -
,'56758")) 123. 100.0 123.4 567.8
SELECT DEC (N1, 3) AS DEC1
,DEC(N2,4,1) AS DEC2
,DEC(C1,4,1) AS DEC3

,DEC(C2,4,1,’S$’) AS DEC4
FROM TEMP1;

Figure 307, DECIMAL function examples

WARNING: Converting afloating-point number to decimal may get different results from
converting the same number to integer. See page 329 for a discussion of thisissue.
DEGREES

Returns the number of degrees converted from the argument as expressed in radians. The out-
put format is double.

DEREF

Returns an instance of the target type of the argument.

DECRYPT_BIN and DECRYPT_CHAR

Decrypts data that has been encrypted using the ENCRY PT function. Use the BIN function to
decrypt binary data (e.g. BLOBS, CLOBS) and the CHAR function to do character data. Nu-
meric data cannot be encrypted.

DECRYPT_BIN (— encrypted data)
I T B , password] }

DECRYPT_CHAR
Figure 308, DECRYPT function syntax

If the password is null or not supplied, the value of the encryption password special register
will be used. If it isincorrect, a SQL error will be generated.

112 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

SELECT ID
, NAME
,DECRYPT CHAR (NAME2, ' CLUELESS') AS NAME3
, GETHINT (NAME2) AS HINT
, NAME2
FROM (SELECT 1ID
, NAME
,ENCRYPT (NAME, ' CLUELESS’ , 'MY BOSS’) AS NAME2
FROM STAFF
WHERE ID < 30
)AS XXX
ORDER BY ID;

Figure 309, DECRYPT_CHAR function example

DIFFERENCE

Returns the difference between the sounds of two strings as determined using the SOUNDEX
function. The output (of type integer) ranges from 4 (good match) to zero (poor match).

SELECT A .NAME AS N1 ANSWER
, SOUNDEX (A.NAME) AS S1 ==============================
, B.NAME AS N2 N1 S1 N2 S2 DF
,SOUNDEX (B.NAME) AS S2 = —=——--= —--o —mmmmmmmm —mmm -
,DIFFERENCE Sanders S536 Sneider S536 4
(A.NAME,B.NAME) AS DF Sanders S536 Smith S530 3
FROM STAFF A Sanders S536 Lundquist L532 2
,STAFF B Sanders S536 Daniels D542 1
WHERE A.ID = 10 Sanders S536 Molinare M456 1
AND B.ID > 150 Sanders S536 Scoutten S350 1
AND B.ID < 250 Sanders S536 Abrahams Ale5 0
ORDER BY DF DESC Sanders S536 Kermisch K652 0
,N2 ASC; Sanders S536 Lu LO0OO O

Figure 310, DIFFERENCE function example

NOTE: The difference function returns one of five possible values. In many situations, it
would imprudent to use a value with such low granularity to rank values.

DIGITS

Converts an integer or decimal value into a character string with leading zeros. Both the sign
indicator and the decimal point are lost in the trandlation.

SELECT S1 ANSWER
,DIGITS(S1) AS DS1 =========================
,D1 S1 DS1 D1 DD1
,DIGITS(D1) AS DD1I m=mmmmm —mm-m oo -—-
FROM SCALAR; -2 00002 -2.4 024
0 00000 0.0 000
1 00001 1.8 018

Figure 311, DIGITS function examples

The CHAR function can sometimes be used as alternative to the DIGITS function. Their out-
put differs slightly - see page 300 for a comparison.

NOTE: Neither the DIGITS nor the CHAR function do agreat job of converting numbersto
characters. See page 300 for some user-defined functions that can be used instead.

DLCOMMENT
Returns the comments value, if it exists, from a datalink value.

Scalar Functions 113

Graeme Birchall ©

DLLINKTYPE
Returns the linktype value from a datalink value.

DLURLCOMPLETE
Returns the URL value from a datalink value with alinktype of URL.

DLURLPATH

Returns the path and file name necessary to access afile within a given server from a datalink
value with linktype of URL.

DLURLPATHONLY

Returns the path and file name necessary to access afile within a given server from a datalink
value with alinktype of URL. The value returned never includes a file access token.

DLURLSCHEME
Returns the scheme from a datalink value with a linktype of URL.

DLURLSERVER
Returns the file server from a datalink value with alinktype of URL.

DLVALUE
Returns adatalink value.

DOUBLE or DOUBLE_PRECISION

Converts numeric or valid character input to type double. This function is actually two with
the same name. The one that converts numeric input isa SY SIBM function, while the other
that handles character input isa SY SFUN function. The keyword DOUBLE_PRECISION has
not been defined for the latter.

WITH TEMP1(C1l,D1l) AS ANSWER (output shortened)
(VALUES (’12345',12.4) —=================================
, ("-23.57,1234) C1D D1D
, ("1E+45',-234) oo oo
, ("-2e05",+2.4)) +1.23450000E+004 +1.24000000E+001
SELECT DOUBLE (C1) AS C1D -2.35000000E+001 +1.23400000E+003
,DOUBLE (D1) AS D1D +1.00000000E+045 -2.34000000E+002
FROM TEMP1; -2.00000000E+005 +2.40000000E+000

Figure 312, DOUBLE function examples

See page 329 for adiscussion on floating-point number manipulation.

ENCRYPT

Returns a encrypted rendition of the input string. The input must be char or varchar. The out-
put is varchar for bit data.

FENCRYPT — (—— encrypted data)
| , password ‘ﬁf }
, hint J

Figure 313, DECRYPT function syntax

114 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

The input values are defined as follows:

e ENCRYPTED DATA: A char or varchar string 32633 bytes that is to be encrypted. Nu-
meric data must be converted to character before encryption.

e PASSWORD: A char or varchar string of at least six bytes and no more than 127 bytes. If
the value is null or not provided, the current value of the encryption password special reg-
ister will be used. Be aware that a password that is padded with blanks is not the same as
one that lacks the blanks.

e HINT: A char or varchar string of up to 32 bytes that can be referred to if one forgets
what the password is. It isincluded with the encrypted string and can be retrieved using
the GETHINT function.

The length of the output string can be calculated thus:

o When the hint is provided, the length of the input data, plus eight bytes, plus the distance
to the next eight-byte boundary, plus thirty-two bytes for the hint.

¢ When the hint is not provided, the length of the input data, plus eight bytes, plus the dis-
tance to the next eight-byte boundary.
SELECT ID
, NAME
,ENCRYPT (NAME, ' THAT IDIOT’,’'MY BROTHER’) AS NAME2
FROM STAFF

WHERE ID < 30
ORDER BY 1ID;

Figure 314, ENCRYPT function example

EVENT_MON_STATE
Returns an operational state of a particular event monitor.

EXP

Returns the exponentia function of the argument. The output format is double.

WITH TEMP1 (N1) AS ANSWER
(VALUES (0) ==============================
UNION ALL N1 E1 E2
SELECT N1 + 1 e e
FROM TEMP1 +1.00000000000000E+0 1
WHERE NI < 10) +2.71828182845904E+0 2
SELECT N1 +7.38905609893065E+0 7

+2.00855369231876E+1 20
+5.45981500331442E+1 54
.48413159102576E+2 148
+4.03428793492735E+2 403
+1.09663315842845E+3 1096
+2.98095798704172E+3 2980
+8.10308392757538E+3 8103
+2.20264657948067E+4 22026

,EXP(N1) AS El
, SMALLINT (EXP(N1)) AS E2
FROM TEMP1;

OV JaO UL WNKF O
+
[y

=

Figure 315, EXP function examples

FLOAT
Same as DOUBLE.

Scalar Functions 115

Graeme Birchall ©

FLOOR

Returns the next largest integer value that is smaller than or equal to the input (e.g. 5.945 re-
turns 5.000). The output field type will equal the input field type.

SELECT D1 ANSWER (float output shortened)
,FLOOR (D1) AS D2 ——=================================
, F1 D1 D2 F1 F2

,FLOOR(F1) AS F2 ——--- e

FROM SCALAR ; -2.4 -3. -2.400E+0 -3.000E+0
0.0 +0. +0.000E+0 +0.000E+0
1.8 +1. +1.800E+0 +1.000E+0

Figure 316, FLOOR function examples

GENERATE_UNIQUE

Uses the system clock and node number to generate a value that is guaranteed unique (aslong
as one does not reset the clock). The output is of type char(13) for bit data. There are no ar-
guments. The result is essentialy atimestamp (set to GMT, not local time), with the node
number appended to the back.

SELECT ID

, GENERATE_UNIQUE () AS UNIQUE_VAL#1
, DEC (HEX (GENERATE_UNIQUE()),26) AS UNIQUE_VAL#2
FROM STAFF
WHERE ID < 50

ORDER BY 1ID;

NOTE: 2ND FIELD => 10 20011017191648990521000000.
IS UNPRINTABLE. => 20 20011017191648990615000000.
30 20011017191648990642000000.
40 20011017191648990665000000.

Figure 317, GENERATE_UNIQUE function examples

Observe that in the above example, each row gets a higher value. Thisisto be expected, and
isin contrast to a CURRENT TIMESTAMP call, where every row returned by the cursor will
have the same timestamp value. Also notice that the second invocation of the function on the
same row got alower value (than the first).

In the prior query, the HEX and DEC functions were used to convert the output value into a
number. Alternatively, the TIMESTAMP function can be used to convert the date component
of the datainto avalid timestamp. In a system with multiple nodes, there is no guarantee that
this timestamp (alone) is unique.

Making Random

Onething that DB2 lacks is a random number generator that makes unique values. However,
if we flip the characters returned in the GENERATE_UNIQUE output, we have something
fairly close to what is needed. Unfortunately, DB2 also lacks a REV ERSE function, so the
data flipping has to be done the hard way.

116 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

SELECT Ul

,SUBSTR(U1,20,1) CONCAT SUBSTR(U1,19,1) CONCAT
SUBSTR (U1,18,1) CONCAT SUBSTR(U1,17,1) CONCAT
SUBSTR (U1,16,1) CONCAT SUBSTR(U1l,15,1) CONCAT
SUBSTR (U1, 14,1) CONCAT SUBSTR(U1,13,1) CONCAT
SUBSTR (U1,12,1) CONCAT SUBSTR(U1l,11,1) CONCAT
SUBSTR(U1,10,1) CONCAT SUBSTR(U1,09,1) CONCAT
SUBSTR (U1,08,1) CONCAT SUBSTR(U1,07,1) CONCAT
SUBSTR (U1, 06,1) CONCAT SUBSTR(U1l,05,1) CONCAT
SUBSTR (U1, 04,1) CONCAT SUBSTR(U1l,03,1) CONCAT
SUBSTR (U1, 02,1) CONCAT SUBSTR(U1,01,1) AS U2
FROM (SELECT HEX (GENERATE UNIQUE()) AS Ul
FROM STAFF
WHERE 1ID < 50) AS XXX
ORDER BY U2;
ANSWER
Ul U2

20000901131649119940000000 04991194613110900002
20000901131649119793000000 39791194613110900002
20000901131649119907000000 70991194613110900002
20000901131649119969000000 96991194613110900002

Figure 318, GENERATE_UNIQUE output, characters reversed to make pseudo-random

Observe above that we used a nested table expression to temporarily store the results of the
GENERATE_UNIQUE calls. Alternatively, we could have put a GENERATE_UNIQUE call
inside each SUBSTR, but these would have amounted to separate function calls, and thereisa
very small chance that the net result would not always be unique.

GETHINT

Returns the password hint, if one isfound in the encrypted data.
SELECT ID

, NAME
,GETHINT (NAME2) AS HINT
FROM (SELECT ID
, NAME
, ENCRYPT (NAME, ' THAT IDIOT’,’'MY BROTHER'’) AS NAME2
FROM STAFF
WHERE ID < 30 ANSWER
)AS XXX =====================
ORDER BY ID; ID NAME HINT

10 Sanders MY BROTHER
20 Pernal MY BROTHER

Figure 319, GETHINT function example

GRAPHIC

Convertsthe input (1st argument) to a graphic data type. The output length (2nd argument) is
optional.

HEX
Returns the hexadecimal representation of avalue. All input types are supported.

Scalar Functions 117

Graeme Birchall ©

WITH TEMPL (N1) AS ANSWER
(VALUES (-3) ===============================
UNION ALL S SHX DHX FHX
SELECT N1 + 1 e e e
FROM TEMP1 -3 FDFF 00003D 00000000000008C0
WHERE N1 < 3) -2 FEFF 00002D 00000000000000C0
SELECT SMALLINT (N1) AS S -1 FFFF 00001D 000000000000F0BF
,HEX (SMALLINT (N1)) AS SHX 0 0000 00000C 0000000000000000

,HEX (DEC(N1,4,0)) AS DHX

0100 00001C 000000000000FO3F

1
,HEX (DOUBLE (N1)) AS FHX 2 0200 00002C 0000000000000040
3

FROM TEMP1;

0300 00003C 00000000000C0CO840

Figure 320, HEX function examples, numeric data

SELECT C1 ANSWER
,HEX (C1) AS CHX e ——
, V1 c1 CHX V1 VHX
JHEX (V1) AS VHX =~ mmmmmm mmmmmmmmmmmn mmmmem meemeo oo
FROM SCALAR; ABCDEF 414243444546 ABCDEF 414243444546

ABCD 414243442020 ABCD 41424344
AB 414220202020 AB 4142

Figure 321, HEX function examples, character & varchar

SELECT DT1 ANSWER
,HEX (DT1) AS DTHX s===============ssss=s=s=s=s=s======
, TM1 DT1 DTHX ™1 TMHX
JHEX (TM1) AS TMHX ~ mmmmmmmmmm mmmmmmmm mmmmmom o oo
FROM SCALAR; 04/22/1996 19960422 23:58:58 235858

08/15/1996 19960815 15:15:15 151515
01/01/0001 00010101 00:00:00 000000

Figure 322, HEX function examples, date & time

HOUR
Returns the hour (as in hour of day) part of atime value. The output format is integer.
SELECT T™1 ANSWER
,HOUR (TM1) AS HR —===========
FROM SCALAR T™1 HR

ORDER BY TM1; e e e -

00:00:00 0
15:15:15 15
23:58:58 23

Figure 323, HOUR function example

IDENTITY_VAL_LOCAL

Returns the most recently assigned value (by the current user) to an identity column. The re-
sult type isdecimal (31,0), regardless of the field type of the identity column. See page 235
for detailed notes on using this function.

CREATE TABLE SEQ#

(IDENT VAL INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY
,CUR_TS TIMESTAMP NOT NULL
, PRIMARY KEY (IDENT VAL)) ;
COMMIT;
INSERT INTO SEQ# VALUES (DEFAULT, CURRENT TIMESTAMP) ;

ANSWER
WITH TEMP (IDVAL) AS ======
(VALUES (IDENTITY VAL LOCAL())) IDVAL
SELECT * s e
FROM TEMP; 1.

Figure 324, IDENTITY_VAL_LOCAL function usage

118 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

INSERT

Insert one string in the middle of another, replacing a portion of what was already there. If the
value to be inserted is either longer or shorter than the piece being replaced, the remainder of
the data (on the right) is shifted either |eft or right accordingly in order to make a good fit.

F INSERT (—— source ——, start-pos ——, del-bytes ——, new-valuef)H

Figure 325, INSERT function syntax

Usage Notes
e Acceptable input types are varchar, clob(1M), and blob(1M).
e Thefirst and last parameters must always have matching field types.

e Toinsert anew value in the middle of another without removing any of what is already
there, set the third parameter to zero.

e Thevarchar output is aways of length 4K.

SELECT NAME ANSWER (4K output fields shortened)
, INSERT (NAME, 3,2, 'A") e
, INSERT (NAME, 3,2, 'AB’) NAME 2 3 4
, INSERT (NAME, 3,2, "ABC’) = —=-----m- —mmmmmm mmmmmmmm —m o oo oo
FROM STAFF Sanders Salers SaABers SaABCers
WHERE 1ID < 40; Pernal PeAal PeABal PeABCal
Marenghi MaAnghi MaABnghi MaABCnghi

Figure 326, INSERT function examples

INT or INTEGER

The INTEGER or INT function converts either a number or avalid character value into an
integer. The character input can have leading and/or trailing blanks, and a sign indictor, but it
can not contain adecimal point. Numeric decimal input works just fine.

SELECT D1 ANSWER
, INTEGER (D1) ====================================
,INT (" +123") D1 2 3 4 5
JINT(7-1237) mmmmemmmeemmmmee e oo
JINT (Y 123 ') -2.4 -2 123 -123 123
FROM SCALAR; 0.0 0 123 -123 123
1.8 1 123 -123 123

Figure 327, INTEGER function examples

JULIAN_DAY

Converts a date (or equivalent) value into a number which represents the number of days
since January the 1st, 4,713 BC. The output format is integer.

WITH TEMP1 (DT1) AS ANSWER
(VALUES (’0001-01-01-00.00.00") =========================
, (71752-09-10-00.00.00") DT DY DJ
, (71993-01-03-00.00.00") mmmmmmmmem —mmemo oo
, (71993-01-03-23.59.59")) 01/01/0001 1 1721426
SELECT DATE (DT1) AS DT 09/10/1752 639793 2361218
,DAYS (DT1) AS DY 01/03/1993 727566 2448991
,JULIAN DAY (DT1) AS DJ 01/03/1993 727566 2448991
FROM TEMP1;

Figure 328, JULIAN_DAY function example

Scalar Functions

119

Graeme Birchall ©

Julian Days, A History

| happen to be a bit of an Astronomy nut, so what followsis arather extended description of
Julian Days - their purpose, and history (taken from the web).

The Julian Day calendar is used in Astronomy to relate ancient and modern astronomical ob-
servations. The Babylonians, Egyptians, Greeks (in Alexandria), and others, kept very de-
tailed records of astronomical events, but they all used different calendars. By converting all
such observations to Julian Days, we can compare and correlate them.

For example, asolar eclipse is said to have been seen at Ninevah on Julian day 1,442,454 and
alunar eclipseis said to have been observed at Babylon on Julian day number 1,566,839.
These numbers correspond to the Julian Calendar dates -763-03-23 and -423-10-09 respec-
tively). Thusthe lunar eclipse occurred 124,384 days after the solar eclipse.

The Julian Day number system was invented by Joseph Justus Scaliger (born 1540-08-05 Jin
Agen, France, died 1609-01-21 Jin Leiden, Holland) in 1583. Although the term Julian Cal-
endar derives from the name of Julius Caesar, the term Julian day number probably does not.
Evidently, this system was named, not after Julius Caesar, but after its inventor’s father, Julius
Caesar Scaliger (1484-1558).

The younger Scaliger combined three traditionally recognized temporal cycles of 28, 19 and
15 years to obtain a great cycle, the Scaliger cycle, or Julian period, of 7980 years (7980 is
the least common multiple of 28, 19 and 15). The length of 7,980 years was chosen as the
product of 28 times 19 times 15; these, respectively, are:

The number of years when dates recur on the same days of the week.

The lunar or Metonic cycle, after which the phases of the Moon recur on aparticular day in
the solar year, or year of the seasons.

The cycle of indiction, originally a schedule of periodic taxes or government requisitionsin
ancient Rome.

Thefirst Scaliger cycle began with Year 1 on -4712-01-01 (Julian) and will end after 7980
years on 3267-12-31 (Julian), which is 3268-01-22 (Gregorian). 3268-01-01 (Julian) isthe
first day of Year 1 of the next Scaliger cycle.

Astronomers adopted this system and adapted it to their own purposes, and they took noon
GMT -4712-01-01 as their zero point. For astronomers a day begins at noon and runs until the
next noon (so that the nighttime falls conveniently within one "day"). Thus they defined the
Julian day number of a day as the number of days (or part of aday) elapsed since noon GMT
on January 1st, 4713 B.C.E.

Thiswas not to the liking of all scholars using the Julian day number system, in particular,
historians. For chronologists who start “days" at midnight, the zero point for the Julian day
number system is 00:00 at the start of -4712-01-01 J, and thisis day 0. This means that 2000-
01-01 Gis 2,451,545 JD.

Since most days within about 150 years of the present have Julian day numbers beginning
with "24", Julian day numbers within this 300-odd-year period can be abbreviated. In 1975
the convention of the modified Julian day number was adopted: Given a Julian day number
JD, the modified Julian day number MJD is defined as MJD = JD - 2,400,000.5. This has two
purposes:

Days begin at midnight rather than noon.

120 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

For dates in the period from 1859 to about 2130 only five digits need to be used to specify the
date rather than seven.

MJD 0 thus corresponds to JD 2,400,000.5, which is twelve hours after noon on JD 2,400,000
= 1858-11-16. Thus MJD 0 designates the midnight of November 16th/17th, 1858, so day O
in the system of modified Julian day numbersisthe day 1858-11-17.

Thefollowing SQL statement usesthe JULIAN_DAY function to get the Julian Date for cer-
tain days. The same calculation is aso done using hand-coded SQL .

SELECT BD
,JULIAN DAY (BD)

, (1461 * (YEAR(BD) + 4800 + (MONTH (BD) -14) /12)) /4

+(367 * (MONTH(BD)- 2 - 12* ((MONTH (BD) -14) /12))) /12

-(3 * ((YEAR(BD) + 4900 + (MONTH (BD) -14) /12) /100)) /4

+DAY (BD) - 32075
FROM (SELECT BIRTHDATE AS BD

FROM EMPLOYEE

WHERE MIDINIT = 'R’ ANSWER

) AS XXX —==========—=—==—==—========
ORDER BY BD; BD 2 3

05/17/1926 2424653 2424653
03/28/1936 2428256 2428256
07/09/1946 2432011 2432011
04/12/1955 2435210 2435210

Figure 329, JULIAN_DAY function examples

Julian Dates

Many computer users think of the "Julian Date" as a date format that has a layout of "yynnn"
or "yyyynnn" where"yy" isthe year and "nnn" is the number of days since the start of the
same. A more correct use of the term "Julian Date" refersto the current date according to the
calendar as originally defined by Julius Caesar - which has aleap year on every fourth year.
In the US/UK, this calendar was in effect until "1752-09-14". The days between the 3rd and
13th of September in 1752 were not used in order to put everything back in sync. In the 20th
and 21st centuries, to derive the Julian date one must subtract 13 days from the relevant Gre-
gorian date (e.g.1994-01-22 becomes 1994-01-07).

Thefollowing SQL illustrates how to convert a standard DB2 Gregorian Date to an equiva-
lent Julian Date (calendar) and a Julian Date (output format):

ANSWER
DT DJ1 DJ2
WITH TEMP1(DT1) AS mmmmmmmmmm mmmm oo o m oo
(VALUES (’1997-01-01") 01/01/1997 12/17/1996 1997001
, (11997-01-02") 01/02/1997 12/18/1996 1997002
, (11997-12-31")) 12/31/1997 12/16/1997 1997365
SELECT DATE (DT1) AS DT
,DATE (DT1) - 15 DAYS AS DJ1

,YEAR (DT1) * 1000 + DAYOFYEAR (DT1l) AS DJ2
FROM TEMP1;

Figure 330, Julian Date outputs

WARNING: DB2 does not make allowances for the days that were not used when English-
speaking countries converted from the Julian to the Gregorian calendar in 1752

LCASE or LOWER

Coverts amixed or upper-case string to lower case. The output is the same data type and
length as the input.

Scalar Functions 121

Graeme Birchall ©

SELECT NAME
, LCASE (NAME) AS LNAME
,UCASE (NAME) AS UNAME NAME LNAME UNAME
FROM STAFF
WHERE ID < 30;

Sanders sanders SANDERS
Pernal pernal PERNAL

Figure 331, LCASE function example
Documentation Comment

According to the DB2 UDB V8.1 SQL Reference, the LCASE and UCA SE functions are the
inverse of each other for the standard a phabetical characters, "a' to "z", but not for some odd
European characters. Therefore LCA SE(UCA SE(string)) may not equal LCASE(string).

This may be true from some code pages, but it is not for the one that | use. The following re-
cursive SQL illustrates the point. It shows that for every ASCII character, the use of both
functions gives the same result as the use of just one:

WITH TEMP1 (N1,Cl) AS
(VALUES (SMALLINT (0),CHR(0))

UNION ALL N1l Cl1 Ul U2 L1 L2
SELECT N1 + 1 —eem oo oo oo o
,CHR (N1 + 1) <No rows>

FROM TEMP1
WHERE N1 < 255
)

SELECT N1
,C1
, UCASE (C1) AS Ul
, UCASE (LCASE (C1)) AS U2
,LCASE (C1) AS L1
, LCASE (UCASE (C1)) AS L2

FROM

TEMP1

WHERE UCASE(C1l) <> UCASE(LCASE(C1))
OR LCASE(C1l) <> LCASE(UCASE(C1));

Figure 332, LCASE and UCASE usage on special characters

LEFT

The LEFT function has two arguments: The first is an input string of type char, varchar, clob,
or blob. The second is a positive integer value. The output is the left most charactersin the
string. Trailing blanks are not removed.

WITH TEMP1 (Cl) AS ANSWER

(VALUES ('’ ABC’) ================
, (' ABC ") Cc1 c2 L2
, ("AaBC ")) e am e --

SELECT C1 ABC AB 4
,LEFT(C1,4) AS C2 ABC ABC 4
, LENGTH (LEFT (C1,4)) AS L2 ABC ABC 4

FROM TEMP1 ;
Figure 333, LEFT function examples

If the input is either char or varchar, the output is varchar(4000). A column thislong isanui-
sance to work with. Where possible, use the SUBSTR function to get around this problem.
LENGTH

Returns an integer value with the internal length of the expression (except for double-byte
string types, which return the length in characters). The value will be the same for al fieldsin
a column, except for columns containing varying-length strings.

122 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

SELECT LENGTH (D1) ANSWER
, LENGTH (F1) S ——
, LENGTH (S1) 1 2 3 4 5
, LENGTH (C1) .
, LENGTH (RTRIM(C1)) 2 8 2 6 6
FROM SCALAR; 2 8 2 6 4
2 8 2 6 2

Figure 334, LENGTH function examples

LN or LOG
Returns the natural logarithm of the argument (same as LOG). The output format is double.
WITH TEMP1 (N1) AS ANSWER
(VALUES (1), (123), (1234) ————————=—————==—=———=——=——=—===—====
, (12345), (123456)) N1 L1
SELECT N1 mm e e e e e e m————— o
,LOG(N1) AS L1 1 +0.00000000000000E+000
FROM TEMP1; 123 +4.81218435537241E+000

1234 +7.11801620446533E+000
12345 +9.42100640177928E+000
123456 +1.17236400962654E+001

Figure 335, LOG function example
LOCATE

Returns an integer value with the absolute starting position of the first occurrence of the first
string within the second string. If there is no match the result is zero. The optional third pa-
rameter indicates where to start the search.

F LOCATE (—find-string —, look-in-string

)
L, start-pos. J }
Figure 336, LOCATE function syntax

Theresult, if thereisamatch, is aways the absolute position (i.e. from the start of the string),
not the relative position (i.e. from the starting position).

SELECT C1 ANSWER
,LOCATE (D', C1) —=========================
,LOCATE (D', C1,2) c1l 2 3 4 5
,LOCATE ('EF’,C1) —o—-_- S
,LOCATE (‘A’, C1,2) ABCDEF 4 4 5 0
FROM SCALAR; ABCD 4 4 0 0
AB 0 0 0 0

Figure 337, LOCATE function examples

LOG or LN
See the description of the LN function.

LOG10

Returns the base ten logarithm of the argument. The output format is double.

Scalar Functions 123

Graeme Birchall ©

WITH TEMP1 (N1) AS ANSWER

(VALUES (1), (123), (1234) ===============================
, (12345), (123456)) N1 L1

SELECT N1 e
,LOG10 (N1) AS L1 1 +0.00000000000000E+000

FROM TEMP1; 123 +2.08990511143939E+000

1234 +3.09131515969722E+000
12345 +4.09149109426795E+000
123456 +5.09151220162777E+000

Figure 338, LOG10 function example

LONG_VARCHAR

Convertsthe input (1st argument) to along_varchar datatype. The output length (2nd argu-
ment) is optional.

LONG_VARGRAPHIC

Convertsthe input (1st argument) to along_vargraphic data type. The output length (2nd ar-
gument) is optional.

LOWER

See the description for the LCASE function.

LTRIM

Remove leading blanks, but not trailing blanks, from the argument.

WITH TEMP1 (Cl) AS ANSWER

(VALUES ('’ ABC’) ================
, (' ABC ") Cc1 c2 L2
, ("aBC ")) e am e --

SELECT C1 ABC ABC 3
,LTRIM(C1) AS C2 ABC ABC 4
, LENGTH (LTRIM(C1)) AS L2 ABC ABC 5

FROM TEMP1 ;
Figure 339, LTRIM function example

MICROSECOND

Returns the microsecond part of atimestamp (or equivalent) value. The output isinteger.

SELECT TS1 ANSWER
,MICROSECOND (TS1) ======================================

FROM SCALAR TS1 2
ORDER BY TS1; e emeo e
0001-01-01-00.00.00.000000 0
1996-04-22-23.58.58.123456 123456
1996-08-15-15.15.15.151515 151515

Figure 340, MICROSECOND function example

MIDNIGHT_SECONDS

Returns the number of seconds since midnight from atimestamp, time or equivalent value.
The output format is integer.

124 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

SELECT TS1 ANSWER
,MIDNIGHT SECONDS (TS1) ======================================
,HOUR (TS1) *3600 + TS1 2 3
MINUTE (TS1) *60 + = —--mmmmmmmmmmmmm oo mmmmm o oo oo
SECOND (TS1) 0001-01-01-00.00.00.000000 0 0
FROM SCALAR 1996-04-22-23.58.58.123456 86338 86338
ORDER BY TS1; 1996-08-15-15.15.15.151515 54915 54915

Figure 341, MIDNIGHT_SECONDS function example

There is no single function that will convert the MIDNIGHT_SECONDS output back into a
valid time value. However, it can be done using the following SQL.:

ANSWER
MS T™

WITH TEMP1 (MS) AS 0 00:00:00
(SELECT MIDNIGHT SECONDS (TS1) 54915 15:15:15
FROM SCALAR 86338 23:58:58
)
SELECT MS

, SUBSTR (DIGITS (MS/3600). 9) ret

SUBSTR (DIGITS ((MS- ((MS/3600) *3600)) /60),9) r

SUBSTR (DIGITS (MS- ((MS/60) *60)),9) AS TM

FROM TEMP1
ORDER BY 1;

Figure 342, Convert MIDNIGHT_SECONDS output back to a time value

NOTE: Imagine a column with two timestamp values: "1996-07-15.24.00.00" and "1996-07-
16.00.00.00". These two values represent the same point in time, but will return different
MIDNIGHT_SECONDS results. See the chapter titled "Quirksin SQL" on page 319 for a
detailed discussion of this problem.

MINUTE

Returns the minute part of atime or timestamp (or equivalent) value. The output is integer.

SELECT TS1 ANSWER
,MINUTE (TS1) ======================================
FROM SCALAR TS1 2
ORDER BY TS1; = s e e e e e e e ——m— -
0001-01-01-00.00.00.000000 0
1996-04-22-23.58.58.123456 58
1996-08-15-15.15.15.151515 15

Figure 343, MINUTE function example

MOD

Returns the remainder (modulus) for the first argument divided by the second. In the follow-
ing example the last column uses the MOD function to get the modulus, while the second to
last column obtains the same result using simple arithmetic.

Scalar Functions 125

Graeme Birchall ©

WITH TEMP1 (N1,N2) AS ANSWER
(VALUES (-31,+11) =======================
UNION ALL N1 N2 DIV MD1 MD2
SELECT N1 + 13 T
,N2 - 4 -31 11 -2 -9 -9
FROM TEMP1 -18 7 -2 -4 -4
WHERE N1l < 60 -5 3 -1 -2 -2
) 8 -1 -8 0 0
SELECT N1 21 -5 -4 1 1
,N2 34 -9 -3 7 7
,N1/N2 AS DIV 47 -13 -3 8 8
,N1- ((N1/N2)*N2) AS MD1 60 -17 -3 9 9
,MOD (N1,N2) AS MD2
FROM TEMP1

ORDER BY 1;
Figure 344, MOD function example

MONTH

Returns an integer value in the range 1 to 12 that represents the month part of a date or time-
stamp (or equivalent) value.

MONTHNAME

Returns the name of the month (e.g. October) as contained in a date (or equivalent) value. The
output format is varchar(100).

SELECT DT1 ANSWER
,MONTH (DT1) =======================
, MONTHNAME (DT1) DT1 2 3
FROM SCALAR e e e _—— mm -
ORDER BY DT1; 01/01/0001 1 January
04/22/1996 4 April
08/15/1996 8 August

Figure 345, MONTH and MONTHNAME functions example

MULTIPLY_ALT

Returns the product of two arguments as a decimal value. Use this function instead of the
multiplication operator when you need to avoid an overflow error because DB2 is putting
aside too much space for the scale (i.e. fractional part of number) Valid input is any exact
numeric type: decimal, integer, bigint, or smallint (but not float).

WITH TEMP1 (N1,N2) AS

(VALUES (DECIMAL(1234,10) ANSWER
,DECIMAL (1234,10))) ========
SELECT N1 >> 1234.
, N2 >> 1234.
,N1 * N2 AS P1 >> 1522756.
,"* (N1, N2) AS P2 >> 1522756.
,MULTIPLY ALT(N1,N2) AS P3 >> 1522756.
FROM TEMP1 ;

Figure 346, Multiplying numbers - examples

When doing ordinary multiplication of decimal values, the output precision and the scaleis
the sum of the two input precisions and scales - with both having an upper limit of 31. Thus,
multiplying a DEC(10,5) number and a DEC(4,2) number returns a DEC(14,7) number. DB2
alwaystriesto avoid losing (truncating) fractional digits, so multiplying a DEC(20,15) hum-
ber with a DEC(20,13) number returns a DEC(31,28) number, which is probably going to be
too small.

126 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

The MULTIPLY _ALT function addresses the multiplication overflow problem by, if need be,
truncating the output scale. If it is used to multiply a DEC(20,15) number and a DEC(20,13)
number, the result is a DEC(31,19) number. The scale has been reduced to accommodate the
required precision. Be aware that when there is aneed for a scale in the output, and it is more
than three digits, the function will leave at least three digits.

Below are some examples of the output precisions and scales generated by this function:

<--MULTIPLY ALT->

RESULT RESULT SCALE PRECSION

INPUT#1 INPUT#2 "*" OPERATOR MULTIPLY ALT TRUNCATD TRUNCATD
DEC(05,00) DEC(05,00) DEC(10,00) DEC(10,00) NO NO
DEC(10,05) DEC(11,03) DEC(21,08) DEC(21,08) NO NO
DEC(20,15) DEC(21,13) DEC(31,28) DEC(31,18) YES NO
DEC(26,23) DEC(10,01) DEC(31,24) DEC(31,19) YES NO
DEC(31,03) DEC(15,08) DEC(31,11) DEC(31,03) YES YES

Figure 347, Decimal multiplication - same output lengths

NODENUMBER

Returns the partition number of the row. Theresult is zero if the tableis not partitioned. The
output is of type integer, and is never null.

NODENUMBER — (— column-name —) }
Figure 348, NODENUMBER function syntax

SELECT NODENUMBER (ID) AS NN ANSWER
FROM STAFF ======
WHERE ID = 10; NN

Figure 349, NODENUMBER function example

The NODENUMBER function will generate a SQL error if the column/row used can not be
related directly back to specific row in areal table. Therefore, one can not use this function on
fieldsin GROUP BY statements, nor in some views. It can also cause an error when used in
an outer join, and the target row failed to match in the join.

NULLIF
Returns null if the two values being compared are equal, otherwise returns the first value.
SELECT S1 ANSWER
,NULLIF(S1,0) —====================
,C1 S1 2 C1l 4
,NULLIF(C1,’AB’) e e e oo
FROM SCALAR -2 -2 ABCDEF ABCDEF
WHERE NULLIF(0,0) IS NULL; 0 - ABCD ABCD
1 1 AB -

Figure 350, NULLIF function examples

PARTITION

Returns the partition map index of the row. Theresult is zero if the table is not partitioned.
The output is of type integer, and is never null.

Scalar Functions 127

Graeme Birchall ©

SELECT PARTITION(ID) AS PP ANSWER
FROM STAFF ======
WHERE ID = 10; PP

0
POSSTR

Returns the position at which the second string is contained in the first string. If thereisno
match the value is zero. Thetest is case sensitive. The output format is integer.

SELECT C1 ANSWER
,POSSTR(C1,’ ') AS P1 ==================
,POSSTR(C1,'CD’) AS P2 C1 P1 P2 P3
,POSSTR(C1,’cd’) AS P3 —----- - - ==

FROM SCALAR AB 3 0 0

ORDER BY 1; ABCD 5 3 0

ABCDEF 0 3 0

Figure 351, POSSTR function examples
POSSTR vs. LOCATE

The LOCATE and POSSTR functions are very similar. Both look for matching strings
searching from the left. The only functional differences are that the input parameters are re-
versed and the LOCATE function enables one to begin the search at somewhere other than
the start. When either is suitable for the task at hand, it is probably better to use the POSSTR
function because it isa SY SIBM function and so should be faster.

SELECT C1 ANSWER
,POSSTR(C1,’ ') AS P1 S==========================
,LOCATE (" ' ,C1) AS L1 C1 P1 L1 P2 L2 P3 L3 L4
,POSSTR(C1,'CD’) AS P2 ——mmm- m= == == - - -- -
,LOCATE(’'CD’,Cl) AS L2 AB 3 3 0 0 0 0 O
,POSSTR(C1,’cd’) AS P3 ABCD 5 5 3 3 0 0 4
,LOCATE(’cd’,Cl) AS L3 ABCDEF 0 O 3 3 0 0 4

,LOCATE ('D’,C1,2) AS L4
FROM SCALAR
ORDER BY 1;

Figure 352, POSSTR vs. LOCATE functions

POWER
Returns the value of the first argument to the power of the second argument
WITH TEMP1 (N1) AS ANSWER
(VALUES (1), (10), (100)) e ———
SELECT N1 N1 Pl P2 P3
,POWER(N1,1) AS P1 mmmmmmm e o o
,POWER(N1,2) AS P2 1 1 1 1
, POWER (N1,3) AS P3 10 10 100 1000
FROM TEMP1; 100 100 10000 1000000

Figure 353, POWER function examples

QUARTER

Returns an integer value in the range 1 to 4 that represents the quarter of the year from a date
or timestamp (or equivalent) value.

RADIANS

Returns the number of radians converted from the input, which is expressed in degrees. The
output format is double.

128 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

RAISE_ERROR

Causes the SQL statement to stop and return a user-defined error message when invoked.
There are alot of usage restrictions involving this function, see the SQL Reference for details.

H RAISE_ERROR—— (—— sqlstate —— ,error-message——) —}

Figure 354, RAISE_ERROR function syntax

SELECT S1 ANSWER
, CASE ==============
WHEN S1 < 1 THEN S1 S1 S2
ELSE RAISE ERROR(’80001’,C1) ====== —————-
END AS S2 -2 -2
FROM SCALAR; 0 0

SQLSTATE=80001
Figure 355, RAISE_ERROR function example

RAND

WARNING: Using the RAND function in a predicate can result in unpredictable results. See
page 322 for a detailed description of thisissue.

Returns a pseudo-random floating-point value in the range of zero to one inclusive. An op-
tional seed value can be provided to get reproducible random results. Thisfunction is espe-
cialy useful when oneistrying to create somewhat realistic sample data.

Usage Notes

o The RAND function returns any one of 32K distinct floating-point valuesin the range of
zero to oneinclusive. Note that many equivalent functions in other languages (e.g. SAS)
return many more distinct values over the same range.

e Thevaues generated by the RAND function are evenly distributed over the range of zero
to oneinclusive.

e A seed can be provided to get reproducible results. The seed can be any valid number of
typeinteger. Note that the use of a seed alone does not give consistent results. Two dif-
ferent SQL statements using the same seed may return different (but internally consistent)
sets of pseudo-random numbers.

e |f the seed valueis zero, theinitial result will also be zero. All other seed values return
initial values that are not the same as the seed. Subsequent calls of the RAND functionin
the same statement are not affected.

o |f there are multiple references to the RAND function in the same SQL statement, the
seed of the first RAND invocation is the one used for al.

o |f the seed valueis not provided, the pseudo-random numbers generated will usualy be
unpredictable. However, if some prior SQL statement in the same thread has already in-
voked the RAND function, the newly generated pseudo-random numbers "may" continue
where the prior ones left off.

Typical Output Values

The following recursive SQL generates 100,000 random numbers using two as the seed value.
The generated data is then summarized using various DB2 column functions:

Scalar Functions 129

Graeme Birchall ©

WITH TEMP (NUM, RAN) AS
(VALUES (INT(1)

,RAND (2))

UNION ALL

SELECT NUM + 1
, RAND ()

FROM TEMP

WHERE NUM < 100000 ANSWER

) =—===========

SELECT COUNT (*) AS #ROWS ==> 100000
, COUNT (DISTINCT RAN) AS #VALUES ==> 31242
,DEC (AVG (RAN) ,7,6) AS AVG RAN ==> 0.499838
,DEC (STDDEV (RAN) , 7, 6) AS STD DEV 0.288706
,DEC (MIN (RAN) ,7,6) AS MIN RAN 0.000000
,DEC (MAX (RAN) ,7,6) AS MAX RAN 1.000000
,DEC (MAX (RAN) ,7,6) -
DEC (MIN (RAN),7,6) AS RANGE 1.000000
,DEC (VAR (RAN) ,7,6) AS VARIANCE 0.083351

FROM TEMP;
Figure 356, Sample output from RAND function

Observe that less than 32K distinct numbers were generated. Presumably, thisis because the
RAND function uses a 2-byte carry. Also observe that the values range from a minimum of
zero to amaximum of one.

WARNING: Unlike most, if not all, other numeric functionsin DB2, the RAND function
returns different resultsin different flavors of DB2.

Reproducible Random Numbers

The RAND function creates pseudo-random numbers. This means that the output |ooks ran-
dom, but it is actually made using avery specific formula. If the first invocation of the func-
tion uses a seed value, al subsequent invocations will return aresult that is explicitly derived
fromtheinitial seed. Toillustrate this concept, the following statement selects six random
numbers. Because of the use of the seed, the same six values will always be returned when
this SQL statement isinvoked (when invoked on my machine):

SELECT DEPTNO AS DNO ANSWER
,RAND (0) AS RAN ===========================

FROM DEPARTMENT DNO RAN

WHERE DEPTNO < 'E’ o oo

ORDER BY 1; A00 +1.15970336008789E-003

B0l +2.35572374645222E-001
C01 +6.48152104251228E-001
D01 +7.43736075930052E-002
D11 +2.70241401409955E-001
D21 +3.60026856288339E-001

Figure 357, Make reproducible random numbers (use seed)

To get random numbers that are not reproducible, simply leave the seed out of the first invo-
cation of the RAND function. To illustrate, the following statement will give differing results
with each invocation:

SELECT DEPTNO AS DNO ANSWER
,RAND () AS RAN ===========================

FROM DEPARTMENT DNO RAN

WHERE DEPTNO < 'D’ o oo

ORDER BY 1; A00 +2.55287331766717E-001

B0l +9.85290078432569E-001
C01 +3.18918424024171E-001

Figure 358, Make non-reproducible random numbers (no seed)

130 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

NOTE: Use of the seed value in the RAND function has an impact across multiple SQL
statements. For example, if the above two statements were always run as a pair (with nothing
else run in between), the result from the second would always be the same.

Generating Random Values

Imagine that we need to generate a set of reproducible random numbers that are within a cer-
tain range (e.g. 5to 15). Recursive SQL can be used to make the rows, and various scalar
functions can be used to get the right range of data.

In the following example we shall make alist of three columns and ten rows. Thefirst field is
a simple ascending sequence. The second is a set of random numbers of type smallint in the
range zero to 350 (by increments of ten). Thelast is a set of random decimal numbersin the
range of zero to 10,000.

WITH TEMP1 (COL1l, COL2, COL3) AS ANSWER

(VALUES (0 ===================

, SMALLINT (RAND (2) *35) *10 COL1 COL2 COL3
,DECIMAL (RAND () *10000,7,2)) - mmmm mmm----
UNION ALL 0 0 9342.32
SELECT COL1 + 1 1 250 8916.28
, SMALLINT (RAND () *35) *10 2 310 5430.76
,DECIMAL (RAND () *10000,7,2) 3 150 5996.88
FROM TEMP1 4 110 8066.34
WHERE COL1 + 1 < 10 5 50 5589.77
) 6 130 8602.86
SELECT * 7 340 184 .94
FROM TEMP1; 8 310 5441.14
9 70 9267.55

Figure 359, Use RAND to make sample data

NOTE: See the section titled "Making Sample Data" for more detailed examples of using the
RAND function and recursion to make test data.

Making Many Distinct Random Values

The RAND function generates 32K distinct random values. To get alarger set of (evenly dis-
tributed) random values, combine the result of two RAND calls in the manner shown below
for the RAN2 column:

WITH TEMP1 (COL1,RAN1,RAN2) AS ANSWER
(VALUES (0 ===================
,RAND (2) COL#1 RAN#1 RAN#2
,RAND () + (RAND () /1E5)) mmeem ameem oo
UNION ALL 30000 19698 29998
SELECT COL1 + 1
, RAND ()

,RAND () + (RAND () /1E5)

FROM TEMP1

WHERE COL1 + 1 < 30000

)

SELECT COUNT (*) AS COL#1
, COUNT (DISTINCT RAN1) AS RAN#1
, COUNT (DISTINCT RAN2) AS RAN#2

FROM TEMP1;

Figure 360, Use RAND to make many distinct random values

Observe that we do not multiply the two values that make up the RAN2 column above. If we
did this, it would skew the average (from 0.5 to 0.25), and we would always get a zero when-
ever either one of the two RAND functions returned a zero.

Scalar Functions 131

Graeme Birchall ©

NOTE: The GENERATE_UNIQUE function can also be used to get alist of distinct values,
and actually does a better job that the RAND function. With a bit of simple data manipulation
(see page 116), these values can a so be made random.

Selecting Random Rows, Percentage

WARNING: Using the RAND function in a predicate can result in unpredictable results. See
page 322 for a detailed description of thisissue.

Imagine that you want to select approximately 10% of the matching rows from some table.
The predicate in the following query will do the job:

SELECT ID ANSWER
, NAME ============
FROM STAFF ID NAME
WHERE RAND() < 0.1 e e oo
ORDER BY ID; 140 Fraye
190 Sneider
290 Quill

Figure 361, Randomly select 10% of matching rows

The RAND function randomly generates values in the range of zero through one, so the above
query should return approximately 10% the matching rows. But it may return anywhere from
zero to al of the matching rows - depending on the specific values that the RAND function
generates. If the number of rows to be processed is large, then the fraction (of rows) that you
get will be pretty close to what you asked for. But for small sets of matching rows, the result
set size is quite often anything but what you wanted.

Selecting Random Rows, Number

The following query will select five random rows from the set of matching rows. It begins (in
the nested table expression) by using the ROW_NUMBER function to assign row numbers to
the matching rows in random order (using the RAND function). Subsequently, those rows
with the five lowest row numbers are selected:

SELECT ID ANSWER
, NAME —=========o-
FROM (SELECT S.* ID NAME
,ROW_NUMBER () OVER(ORDER BY RAND()) AS R --- --------
FROM STAFF S 10 Sanders
)AS XXX 30 Marenghi
WHERE R <=5 190 Sneider
ORDER BY 1ID; 270 Lea

280 Wilson
Figure 362, Select five random rows

Use in DML

Imagine that in act of inspired unfairness, we decided to update a selected set of employee’s
salary to arandom number in the range of zero to $10,000. Thistoo is easy:

UPDATE STAFF
SET SALARY = RAND()*10000
WHERE ID < 50;

Figure 363, Use RAND to assign random salaries

REAL

Returns a single-precision floating-point representation of a number.

132 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

ANSWERS
SELECT N1 AS DEC => 1234567890.123456789012345678901
,DOUBLE (N1) AS DBL => 1.23456789012346e+009
,REAL (N1) AS REL => 1.234568e+009
, INTEGER (N1) AS INT => 1234567890
,BIGINT (N1) AS BIG => 1234567890
FROM (SELECT 1234567890.123456789012345678901 AS N1

FROM STAFF
WHERE ID = 10) AS XXX;

Figure 364, REAL and other numeric function examples

REC2XML
Returns a string formatted with XML tags and containing column names and column data.

REPEAT
Repeats a character string "n" times.

H REPEAT —— (— string-to-repeat — , #times ——) }

Figure 365, REPEAT function syntax

SELECT ID ANSWER

, CHAR (REPEAT (NAME, 3) ,40) —==========================
FROM STAFF ID 2
WHERE ID < 40 e e e — o
ORDER BY ID; 10 SandersSandersSanders

20 PernalPernalPernal
30 MarenghiMarenghiMarenghi

Figure 366, REPEAT function example

REPLACE
Replaces all occurrences of one string with another. The output is of type varchar(4000).

H REPLACE (— string-to-change — , search-for | replace-with —) —}
Figure 367, REPLACE function syntax

SELECT C1 ANSWER
,REPLACE (C1,'AB’,’'XY’) AS R1 e —
,REPLACE(C1,'BA’,’XY’) AS R2 Cl R1 R2

FROM SCALAR; Ll ool ol
ABCDEF XYCDEF ABCDEF
ABCD XYCD ABCD
AB XY AB

Figure 368, REPLACE function examples

The REPLACE function is case sensitive. To replace an input value, regardiess of the case,
one can nest the REPLACE function calls. Unfortunately, this technique getsto be alittle
tedious when the number of charactersto replaceislarge.

SELECT C1 ANSWER
, REPLACE (REPLACE (==============
REPLACE (REPLACE (C1, C1 R1
'AB’,'XY'),’ab’,’'XY"), m-em--— —-—-—-
'Ab’,'XY’"),"aB’,’'XY’") ABCDEF XYCDEF
FROM SCALAR; ABCD XYCD
AB XY

Figure 369, Nested REPLACE functions

Scalar Functions 133

Graeme Birchall ©

RIGHT

Has two arguments: Thefirst is an input string of type char, varchar, clob, or blob. The sec-
ond is a positive integer value. The output, of type varchar(4000), is the right most characters
in the string.

WITH TEMP1 (Cl) AS ANSWER
(VALUES ('’ ABC’) ================
, (* ABC ') Cc1 c2 L2
L (URBCY)) e e --
SELECT C1 ABC ABC 4
,RIGHT (C1,4) AS C2 ABC ABC 4
,LENGTH (RIGHT (C1,4)) AS L2 ABC BC 4
FROM TEMP1 ;

Figure 370, RIGHT function examples

ROUND

Rounds the rightmost digits of number (1st argument). If the second argument is positive, it
rounds to the right of the decimal place. If the second argument is negative, it rounds to the
left. A second argument of zero results rounds to integer. The input and output types are the
same, except for decimal where the precision will be increased by one - if possible. Therefore,
aDEC(5,2)field will be returned as DEC(6,2), and a DEC(31,2) field as DEC(31,2). To trun-
cate instead of round, use the TRUNCATE function.

ANSWER
D1 P2 P1 PO N1 N2
WITH TEMP1(D1) AS 123.400 123.400 123.400 123.000 120.000 100.000
(VALUES (123.400) 23.450 23.450 23.400 23.000 20.000 0.000
., (23.450) 3.456 3.460 3.500 3.000 0.000 0.000
, (3.456) 0.056 0.060 0.100 0.000 0.000 0.000
. .056))
SELECT D1
,DEC (ROUND (D1, +2),6,3) AS P2
,DEC(ROUND (D1, +1),6,3) AS P1
,DEC (ROUND (D1, +0),6,3) AS PO
,DEC(ROUND (D1,-1),6,3) AS N1
,DEC(ROUND (D1, -2),6,3) AS N2
FROM TEMP1;
Figure 371, ROUND function examples
RTRIM
Trims the right-most blanks of a character string.
SELECT C1 ANSWER
,RTRIM(C1) AS R1 ———=——=—=—=—=—==—===========
, LENGTH (C1) AS R2 Cl R1 R2 R3
,LENGTH (RTRIM(C1)) AS R3 —--mmm —mm— - -- --
FROM SCALAR; ABCDEF ABCDEF 6 6
ABCD ABCD 6 4
AB AB 6 2

Figure 372, RTRIM function example

SECOND

Returns the second (of minute) part of atime or timestamp (or equivalent) value.

134

Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

SIGN

Returns -1 if the input number is lessthan zero, O if it equals zero, and +1 if it is greater than
zero. The input and output types will equal, except for decimal which returns double.

SELECT D1 ANSWER (float output shortened)
’ SIGN (Dl) === ====================================
, F1 D1 2 F1 4
,SIGN(F1) mmmmm mmmmmmmmmm mmmmmmmmm o —mm e — oo

FROM SCALAR; - -1.000E+0 -2.400E+0 -1.000E+0

2.4
0.0 +0.000E+0 +0.000E+0 +0.000E+0
1.8 +1.000E+0 +1.800E+0 +1.000E+0

Figure 373, SGN function examples

SIN

Returns the SIN of the argument where the argument is an angle expressed in radians. The
output format is double.

WITH TEMP1 (N1) AS ANSWER

(VALUES (0) =======================

UNION ALL N1 RAN SIN TAN
SELECT N1 + 10 e T
FROM TEMP1 0 0.000 0.000 0.000
WHERE NI < 80) 10 0.174 0.173 0.176
SELECT N1 20 0.349 0.342 0.363
,DEC (RADIANS (N1) ,4,3) AS RAN 30 0.523 0.500 0.577
,DEC (SIN (RADIANS (N1)),4,3) AS SIN 40 0.698 0.642 0.839
,DEC (TAN (RADIANS (N1)),4,3) AS TAN 50 0.872 0.766 1.191
FROM TEMP1; 60 1.047 0.866 1.732
70 1.221 0.939 2.747
80 1.396 0.984 5.671

Figure 374, SN function example

SINH

Returns the hyperbolic sin for the argument, where the argument is an angle expressed in ra-
dians. The output format is double.

SMALLINT

Converts either anumber or avalid character value into a smallint value.

SELECT D1 ANSWER
, SMALLINT (D1) ==================================
, SMALLINT (' +123") D1 2 3 4 5
,SMALLINT (' -123’) = === == ———mm— —m——mm ——m— - -
, SMALLINT (’ 123 ') -2.4 -2 123 -123 123
FROM SCALAR; 0.0 0 123 -123 123
1.8 1 123 -123 123

Figure 375, SVIALLINT function examples

SNAPSHOT Functions

The various SNAPSHOT functions can be used to analyze the system. They are beyond the
scope of this book. Refer instead to the DB2 System Monitor Guide and Reference.

SOUNDEX

Returns a 4-character code representing the sound of the words in the argument. Use the
DIFFERENCE function to convert words to soundex values and then compare.

Scalar Functions 135

Graeme Birchall ©

SELECT A .NAME AS N1 ANSWER
, SOUNDEX (A.NAME) AS S1 ==============================
, B.NAME AS N2 N1 S1 N2 S2 DF
,SOUNDEX (B.NAME) AS S2 = —=——--= —o-o —mmmmmmmm —mmm -
,DIFFERENCE Sanders S536 Sneider S536 4
(A.NAME,B.NAME) AS DF Sanders S536 Smith S530 3
FROM STAFF A Sanders S536 Lundquist L532 2
,STAFF B Sanders S536 Daniels D542 1
WHERE A.ID = 10 Sanders S536 Molinare M456 1
AND B.ID > 150 Sanders S536 Scoutten S350 1
AND B.ID < 250 Sanders S536 Abrahams Al65 0
ORDER BY DF DESC Sanders S536 Kermisch K652 0
,N2 ASC; Sanders S536 Lu LO0OO O

Figure 376, SOUNDEX function example
SOUNDEX Formula

There are several minor variations on the SOUNDEX algorithm. Below is one example:

o Thefirst letter of the nameis left unchanged.

e ThelettersW and H areignored.

e Thevowels A, E, I,0O,U,and Y are not coded, but are used as separators (see last item).
e Theremaining letters are coded as.

B,P,FV 1
CGJK QS X,Z2 2
D, T 3
L 4
M, N 5
6

R

Lettersthat follow letters with same code are ignored unless a separator (see the third
item above) precedes them.

The result of the above calculation is afour byte value. The first byte is a character as defined
in step one. The remaining three bytes are digits as defined in steps two through four. Output
longer than four bytes istruncated If the output is not long enough, it is padded on the right
with zeros. The maximum number of distinct valuesis 8,918.

NOTE: The SOUNDEX function is something of an industry standard that was developed
severa decades ago. Since that time, several other similar functions have been devel oped.

Y ou may want to investigate writing your own DB2 function to search for similar-sounding
names.

SPACE
Returns a string consisting of "n" blanks. The output format is varchar(4000).
WITH TEMP1 (N1) AS ANSWER
(VALUES (1) , (2) , (3)) ==================
SELECT N1 N1 81 g2 83
, SPACE (N1) AS S1 -- === == —-=-
, LENGTH (SPACE (N1)) AS S2 1 1 X
,SPACE(N1) || "X’ AS 83 2 2 X
FROM TEMP1 ; 3 3 X

Figure 377, SPACE function examples

136 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

SQLCACHE_SNAPSHOT

DB2 maintains a dynamic SQL statement cache. It also has severa fields that record usage of
the SQL statements in the cache. The following command can be used to access this data:

DB2 GET SNAPSHOT FOR DYNAMIC SQL ON SAMPLE WRITE TO FILE

ANSWER - PART OF (ONE OF THE STATEMENTS IN THE SQL CACHE)

Number of executions

Number of compilations

Worst preparation time (ms)
Best preparation time (ms)
Rows deleted

Rows inserted

Rows read

Rows updated

Rows written

Statement sorts

Total execution time (sec.ms)
Total user cpu time (sec.ms)
Total system cpu time (sec.ms)
Statement text

Figure 378, GET SNAPSHOT command

The SQLCACHE_SNAPSHOT table function can aso be used to obtain the same data - this
timein tabular format. One first hasto run the above GET SNAPSHOT command. Then one
can run aquery like the following:

Not Collected
Not Collected
Not Collected
Not Collected
Not Collected
Not Collected
Not Collected
Not Collected
Not Collected
select min(dept) from staff

SELECT *
FROM TABLE (SQLCACHE SNAPSHOT ()) SS
WHERE SS.NUM_EXECUTIONS <> 0;

Figure 379, SQLCACHE_SNAPSHOT function example

If one runsthe RESET MONITOR command, the above execution and compilation counts
will be set to zero, but all other fields will be unaffected.

The following query can be used to list all the columns returned by this function:

SELECT ORDINAL AS COLNO
, CHAR (PARMNAME, 18) AS COLNAME
, TYPENAME AS COLTYPE
, LENGTH
, SCALE

FROM SYSCAT . FUNCPARMS

WHERE FUNCSCHEMA = ’'SYSFUN’

AND FUNCNAME = 'SQLCACHE SNAPSHOT'

ORDER BY COLNO;
Figure 380, List columns returned by SQLCACHE _SNAPSHOT

SQRT

Returns the square root of the input value, which can be any positive number. The output
format is double.

WITH TEMP1 (N1) AS ANSWER

(VALUES (0.5), (0.0) N ——
,(1.0),(2.0)) N1 S1

SELECT DEC (N1,4,3) AS NL o oo
,DEC (SQRT (N1),4,3) AS S1 0.500 0.707
FROM TEMP1; 0.000 0.000
1.000 1.000
2.000 1.414

Figure 381, SQRT function example

Scalar Functions 137

Graeme Birchall ©

SUBSTR

Returns part of a string. If the length is not provided, the output is from the start value to the
end of the string.

F SUBSTR (

Figure 382, SUBSTR function syntax

If the length is provided, and it is longer than the field length, a SQL error results. The fol-
lowing statement illustrates this. Note that in this example the DAT1 field has a"field length"
of 9 (i.e. thelength of the longest input string).

string —— , start

L , length A) }

WITH TEMP1 (LEN, DAT1) AS ANSWER

(VALUES (6,'123456789") =========================
,(4,712345") LEN DAT1 LDAT SUBDAT
,(16,7123")

) 6 123456789 9 123456

SELECT LEN 4 12345 5 1234
,DAT1 <error>

, LENGTH (DAT1) AS LDAT
, SUBSTR (DAT1,1,LEN) AS SUBDAT
FROM TEMP1;

Figure 383, SUBSTR function - error because length parmtoo long

The best way to avoid the above problem isto simply write good code. If that sounds too
much like hard work, try the following SQL.:

WITH TEMP1 (LEN, DAT1) AS ANSWER
(VALUES (6,'123456789") =========================
, (4,712345") LEN DAT1 LDAT SUBDAT
, (16,7123’) i
) 6 123456789 9 123456
SELECT LEN 4 12345 5 1234
, DAT1 16 123 3 123

,LENGTH (DAT1) AS LDAT
, SUBSTR (DAT1,1, CASE
WHEN LEN < LENGTH (DAT1) THEN LEN
ELSE LENGTH (DAT1)
END) AS SUBDAT
FROM TEMP1;

Figure 384, SUBSTR function - avoid error using CASE (see previous)

In the above SQL a CASE statement is used to compare the LEN value against the length of
the DAT1 field. If the former islarger, it is replaced by the length of the latter.

If the input is varchar, and no length value is provided, the output is varchar. However, if the
length is provided, the output is of type char - with padded blanks (if needed):

SELECT NAME ANSWER
, LENGTH (NAME) AS LEN ===========================
, SUBSTR (NAME, 5) AS S1 NAME LEN S1 L1 Ss2 L2
, LENGTH (SUBSTR (NAME, 5)) AS L1 = —------- - —--- —— - —-
, SUBSTR (NAME, 5, 3) AS S2 Sanders 7 ers 3 ers 3
, LENGTH (SUBSTR (NAME, 5,3)) AS L2 Pernal 6 al 2 al 3
FROM STAFF Marenghi 8 nghi 4 ngh 3
WHERE 1ID < 60; O’Brien 7 ien 3 ien 3
Hanes 5 s 1l s 3

Figure 385, SUBSTR function - fixed length output if third parm. used

138 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

TABLE

Thereisn't really a TABLE function, but thereis a TABLE phrase that returns aresult, one
row at atime, from either an externa (e.g. user written) function, or from a nested table ex-
pression. The TABLE phrase (function) has to be used in the latter case whenever thereisa
reference in the nested table expression to arow that exists outside of the expression. An ex-
ample follows:

SELECT A.ID ANSWER
,A.DEPT =========================
,A.SALARY ID DEPT SALARY DEPTSAL
,B.DEPTSAL oo ool ool oo
FROM STAFF A 10 20 18357.50 64286.10
, TABLE 20 20 18171.25 64286.10
(SELECT B.DEPT 30 38 17506.75 77285.55
,SUM (B.SALARY) AS DEPTSAL
FROM STAFF B
WHERE B.DEPT = A.DEPT
GROUP BY B.DEPT
)AS B
WHERE A.ID < 40

ORDER BY A.ID;
Figure 386, Full-select with external table reference

See page 249 for more details on using of the TABLE phrase in a nested table expression.

TABLE_NAME

Returns the base view or table name for a particular alias after al alias chains have been re-
solved. The output type is varchar(18). If the alias name is not found, the result is the input
values. There are two input parameters. The first, which is required, is the alias name. The
second, which is optional, is the alias schema. If the second parameter is not provided, the
default schemais used for the qualifier.

CREATE ALIAS EMP1 FOR EMPLOYEE; ANSWER

CREATE ALIAS EMP2 FOR EMP1; =======================

TABSCHEMA TABNAME CARD
SELECT TABSCHEMA mmm e e o

, TABNAME GRAEME EMPLOYEE -1
, CARD

FROM SYSCAT.TABLES

WHERE TABNAME = TABLE NAME (’EMP2’,’GRAEME’) ;

Figure 387, TABLE_NAME function example

TABLE_SCHEMA

Returns the base view or table schema for a particular alias after al alias chains have been
resolved. The output type is char(8). If the alias name is not found, the result is the input val-
ues. There are two input parameters. The first, which isrequired, isthe alias name. The sec-
ond, which is optional, is the alias schema. If the second parameter is not provided, the de-
fault schemais used for the qualifier.

Resolving non-existent Objects

Dependent aliases are not dropped when a base table or view is removed. After the base table
or view drop, the TABLE_SCHEMA and TABLE_NAME functions continue to work fine
(see the 1st output line below). However, when the alias being checked does not exist, the
original input values (explicit or implied) are returned (see the 2nd output line below).

Scalar Functions 139

Graeme Birchall ©

CREATE VIEW FRED1 (C1, C2, C3) ANSWER
AS VALUES (11, ’'AAA’, ’'BBB’); e —
CREATE ALIAS FRED2 FOR FRED1; = —----mmm mmm e oo e oo oo oo o m o
CREATE ALIAS FRED3 FOR FRED2; GRAEME FRED1
GRAEME XXXXX
DROP VIEW FRED1;
WITH TEMP1 (TAB_SCH, TAB_NME) AS
(VALUES (TABLE_SCHEMA('FRED3’,’GRAEME’),TABLE_NAME(’FRED3’)),
(TABLE_SCHEMA(’XXXXX’) ,TABLE_NAME(’XXXXX’,’XXX’)))

SELECT *
FROM TEMP1;

Figure 388, TABLE_SCHEMA and TABLE_NAME functions example

TAN

Returns the tangent of the argument where the argument is an angle expressed in radians.

TANH

Returns the hyperbolic tan for the argument, where the argument is an angle expressed in ra-
dians. The output format is double.

TIME

Converts the input into atime value.

TIMESTAMP

Converts the input(s) into atimestamp value.

Argument Options

e [f only one argument is provided, it must be (one of):

e A timestamp value.

e A character representation of atimestamp (the microseconds are optional).
e A l1l4bytestringintheform: YYYYMMDDHHMMSS.

o If both arguments are provided:

e Thefirst must be adate, or acharacter representation of adate.

e Thesecond must be atime, or a character representation of atime.

SELECT TIMESTAMP(’/1997-01-11-22.44.55.000000")
, TIMESTAMP (' 1997-01-11-22.44.55.000")
, TIMESTAMP ('1997-01-11-22.44.55")
, TIMESTAMP (’19970111224455")
, TIMESTAMP (’1997-01-11",'22.44.55")
FROM STAFF
WHERE ID = 10;

Figure 389, TIMESTAMP function examples

TIMESTAMP_FORMAT

Takes an input string with the format: "YYYY-MM-DD HH:MM:SS' and convertsit into a
valid timestamp value. The VARCHAR_FORMAT function does the inverse.

140 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

WITH TEMP1 (TS1) AS
(VALUES ('1999-12-31 23:59:59')
,(72002-10-30 11:22:33")
)
SELECT TS1
, TIMESTAMP_ FORMAT (TS1,’'YYYY-MM-DD HH24:MI:SS’) AS TS2
FROM TEMP1
ORDER BY TS1; ANSWER

1999-12-31 23:59:59 1999-12-31-23.59.59.000000
2002-10-30 11:22:33 2002-10-30-11.22.33.000000

Figure 390, TIMESTAMP_FORMAT function example
Note that the only allowed formatting mask is the one shown.

TIMESTAMP_ISO

Returns atimestamp in the SO format (yyyy-mm-dd hh:mm:ss.nnnnnn) converted from the
IBM internal format (yyyy-mm-dd-hh.mm.ss.nnnnnn). If the input is a date, zeros are inserted
in the time part. If the input is atime, the current date isinserted in the date part and zerosin
the microsecond section.

SELECT TM1 ANSWER
, TIMESTAMP_ ISO (TM1) .
FROM SCALAR; TM1 2

23:58:58 2000-09-01-23.58.58.000000
15:15:15 2000-09-01-15.15.15.000000
00:00:00 2000-09-01-00.00.00.000000

Figure 391, TIMESTAMP_IS0 function example

TIMESTAMPDIFF

Returns an integer value that is an estimate of the difference between two timestamp values.
Unfortunately, the estimate can sometimes be seriously out (see the example below), so this
function should be used with extreme care.

Arguments

There are two arguments. The first argument indicates what interval kind is to be returned.
Valid options are:

1 = Microseconds. 2 = Seconds. 4 = Minutes.
8 =Hours. 16 = Days. 32 = Weeks.
64 = Months. 128 = Quarters. 256 = Years.

The second argument is the result of one timestamp subtracted from another and then con-
verted to character.

Scalar Functions 141

Graeme Birchall ©

WITH TEMP1 (TS1,TS2) AS
(VALUES (/1996-03-01-00.00.01","1995-03-01-00.00.00")
, (/1996-03-01-00.00.00","1995-03-01-00.00.01"))

SELECT DF1
, TIMESTAMPDIFF (16,DF1) AS DIFF
,DAYS (TS1) - DAYS(TS2) AS DAYS
FROM (SELECT TS1

, TS2
,CHAR (TS1 - TS2) AS DF1l
FROM (SELECT TIMESTAMP (TS1) AS TS1
, TIMESTAMP (TS2) AS TS2
FROM TEMP1
)AS TEMP2 ANSWER
)AS TEMP3; ===============S================
DF1 DIFF DAYS

00010000000001.000000 365 366
00001130235959.000000 360 366

Figure 392, TIMESTAMPDIFF function example

WARNING: The microsecond interval option for TIMESTAMPDIFF has a bug. Do not use.
The other interval types return estimates, not definitive differences, so should be used with
care. To get the difference between two timestamps in days, use the DAY S function as shown
above. It is more accurate.

Roll Your Own

The SQL will get the difference, in microseconds, between two timestamp values. It can be
used as an aternative to the above function.

WITH TEMP1 (TS1,TS2) AS

(VALUES (/1995-03-01-00.12.34.000’,"1995-03-01-00.00.00.000")
, (/1995-03-01-00.12.00.034',71995-03-01-00.00.00.000"))

SELECT MS1

, MS2
,MS1 - MS2 AS DIFF
FROM (SELECT BIGINT (DAYS (TS1) * 86400000000
+ MIDNIGHT SECONDS (TS1) * 1000000
+ MICROSECOND (TS1)) AS MS1
,BIGINT (DAYS (TS2) * 86400000000
+ MIDNIGHT SECONDS (TS2) * 1000000

+ MICROSECOND (TS2)) AS MS2
FROM (SELECT TIMESTAMP (TS1) AS TS1
, TIMESTAMP (TS2) AS TS2
FROM TEMP1
)AS TEMP2
)AS TEMP3
ORDER BY 1; ANSWER

62929699920034000 62929699200000000 720034000
62929699954000000 62929699200000000 754000000

Figure 393, Difference in microseconds between two timestamps

TO_CHAR

Thisfunctionisasynonym for VARCHAR_FORMAT (see page 145). It converts atime-
stamp value into a string using a template to define the output layout.

TO_DATE

Thisfunctionisasynonym for TIMESTAMP_FORMAT (see page 140). It converts a char-
acter string value into a timestamp using atemplate to define the input layout.

142 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

TRANSLATE

Convertsindividual charactersin either a character or graphic input string from one value to
another. It can also convert lower case data to upper case.

F TRANSLATE (— string)
L to, from ‘ }
Y L , Substitute J

Figure 394, TRANSLATE function syntax

Usage Notes
e Theuseof theinput string alone generates upper case output.

e When "from" and "to" values are provided, each individual "from" character in the input
string is replaced by the corresponding "to" character (if there is one).

e |[fthereisno "to" character for aparticular "from" character, those characters in the input
string that match the "from™ are set to blank (if there is no substitute value).

e A fourth, optional, single-character parameter can be provided that is the substitute char-
acter to be used for those "from" values having no "to" value.

e |f there are more "to" charactersthan "from" characters, the additional "to" characters are
ignored.

SELECT 'abcd’ ==> abcd No change

, TRANSLATE (' abcd’) ==> ABCD Make upper case

, TRANSLATE (’'abcd’, "’ ,"a’) ==> bcd ra’=>" '

, TRANSLATE (’abcd’ ,"A’ ,"A") abcd 'A’=>"'A’

, TRANSLATE ('abcd’,'A’,"a") Abcd 'a’'=>'A’

, TRANSLATE (' abcd’ ,"A’,"ab"’) A cd 'a'=>'A",'b'=>" "'
, TRANSLATE (' abcd’ ,'A’,’ab’, " ') A cd 'a'=>'A",'b'=>" "'
, TRANSLATE ('abcd’ ,'A’ ,"ab’,"z") Azcd 'a'=>'A’,'b'=>"'z'
, TRANSLATE (' abcd’,"AB’,’a’) Abcd 'a’=>'A’

FROM STAFF
WHERE ID = 10;

Figure 395, TRANSLATE function examples
REPLACE vs. TRANSLATE - A Comparison

Both the REPLACE and the TRANSLATE functions alter the contents of input strings. They
differ in that the REPLA CE converts whole strings while the TRANSLATE converts multiple
sets of individual characters. Also, the "to" and "from" strings are back to front.

ANSWER

SELECT C1 ==> ABCD

,REPLACE (C1, 'AB’, 'XY') ==> XYCD

,REPLACE (C1, 'BA’, 'XY') ==> ABCD

, TRANSLATE (C1, ‘XY’ , 'AB’) XYCD

, TRANSLATE (C1, 'XY', 'BA’) YXCD
FROM SCALAR
WHERE Cl1 = 'ABCD’;

Figure 396, REPLACE vs. TRANSLATE

TRUNC or TRUNCATE

Truncates (not rounds) the rightmost digits of an input number (1st argument). If the second
argument is positive, it truncates to the right of the decimal place. If the second value is nega-

Scalar Functions 143

Graeme Birchall ©

tive, it truncatesto the left. A second value of zero truncates to integer. The input and output
types will equal. To round instead of truncate, use the ROUND function.

ANSWER
D1 POS2 POS1 ZERO NEG1 NEG2
WITH TEMP1 (D1) AS 123.400 123.400 123.400 123.000 120.000 100.000
(VALUES (123.400) 23.450 23.440 23.400 23.000 20.000 0.000
, (1 23.450) 3.456 3.450 3.400 3.000 0.000 0.000
,(3.456) 0.056 0.050 0.000 0.000 0.000 0.000
. (.056))

SELECT D1
,DEC (TRUNC (D1, +2),6,3) AS POS2
,DEC (TRUNC (D1, +1),6,3) AS POS1
,DEC (TRUNC (D1, +0),6,3) AS ZERO
,DEC (TRUNC (D1, -1),6,3) AS NEGL
,DEC (TRUNC (D1, -2),6,3) AS NEG2

FROM TEMP1

ORDER BY 1 DESC;

Figure 397, TRUNCATE function examples

TYPE_ID
Returns the internal type identifier of he dynamic data type of the expression.

TYPE_NAME
Returns the unqualified name of the dynamic data type of the expression.

TYPE_SECHEMA
Returns the schema name of the dynamic data type of the expression.

UCASE or UPPER

Coverts amixed or lower-case string to upper case. The output is the same data type and
length as the input.

SELECT NAME ANSWER
,LCASE (NAME) AS LNAME === =====================
,UCASE (NAME) AS UNAME NAME LNAME UNAME
FROM STAFF et e emm
WHERE 1ID < 30; Sanders sanders SANDERS

Pernal pernal PERNAL
Figure 398, UCASE function example

VALUE
Same as COALESCE.

VARCHAR

Convertsthe input (1st argument) to a varchar datatype. The output length (2nd argument) is
optional. Trailing blanks are not removed.

144 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

SELECT C1 ANSWER
, LENGTH (C1) AS L1 ========================
, VARCHAR (C1) AS V2 C1 Ll v2 L2 V3
, LENGTH (VARCHAR (C1)) AS L2 = —==---= = —--mmm - —— -
, VARCHAR (C1, 4) AS V3 ABCDEF 6 ABCDEF 6 ABCD
FROM SCALAR; ABCD 6 ABCD 6 ABCD
AB 6 AB 6 AB

Figure 399, VARCHAR function examples

VARCHAR_FORMAT

Converts atimestamp vaueinto a string with the format: "YYYY-MM-DD HH:MM:SS".
The TIMESTAMP_FORMAT function does the inverse.

WITH TEMP1 (TS1) AS

(VALUES (TIMESTAMP (’1999-12-31-23.59.59'))

, (TIMESTAMP (' 2002-10-30-11.22.33"))

)
SELECT TS1
, VARCHAR_ FORMAT (TS1, 'YYYY-MM-DD HH24:MI:SS’) AS TS2
FROM TEMP1
ORDER BY TS1; ANSWER

1999-12-31-23.59.59.000000 1999-12-31 23:59:59
2002-10-30-11.22.33.000000 2002-10-30 11:22:33

Figure 400, VARCHAR_FORMAT function example
Note that the only allowed formatting mask is the one shown.

VARGRAPHIC

Convertsthe input (1st argument) to a vargraphic data type. The output length (2nd argument)
isoptional.

VEBLOB_CP_LARGE

Thisis an undocumented function that IBM has included.

VEBLOB_CP_LARGE
Thisis an undocumented function that IBM has included.

WEEK

Returns avalue in the range 1 to 53 or 54 that represents the week of the year, where aweek
begins on a Sunday, or on the first day of the year. Valid input types are a date, a timestamp,
or an equivalent character value. The output is of type integer.

SELECT WEEK(DATE(’2000-01-01')) AS W1 ANSWER
,WEEK (DATE (' 2000-01-02")) AS W2 ==================
,WEEK (DATE ('2001-01-02")) AS W3 Wl W2 W3 W4 W5
,WEEK (DATE (' 2000-12-31")) AS W4 - == == == ==
,WEEK (DATE (’2040-12-31")) AS W5 1 2 1 54 53

FROM SYSIBM.SYSDUMMY1;
Figure 401, WEEK function examples

Both the first and last week of the year may be partial weeks. Likewise, from one year to the
next, a particular day will often be in a different week (see page 326).

Scalar Functions 145

Graeme Birchall ©

WEEK_ISO

Returns an integer value, in the range 1 to 53, that isthe "1SO" week number. An 1SO week
differs from an ordinary week in that it begins on aMonday and it neither ends nor begins at
the exact end of the year. Instead, week 1 isthe first week of the year to contain a Thursday.
Therefore, it is possible for up to three days at the beginning of the year to appear in the last
week of the previous year. Aswith ordinary weeks, not all 1SO weeks contain seven days.

WITH ANSWER
TEMP1 (N) AS ==========================
(VALUES (0) DTE DY WK DY WI DI
UNION ALL mmmmmm— e
SELECT N+1 1998-12-27 Sun 53 1 52 7
FROM TEMP1 1998-12-28 Mon 53 2 53 1
WHERE N < 10), 1998-12-29 Tue 53 3 53 2
TEMP2 (DT2) AS 1998-12-30 Wed 53 4 53 3
(SELECT DATE(’1998-12-27') + Y.N YEARS 1998-12-31 Thu 53 5 53 4
+ D.N DAYS 1999-01-01 Fri 1 6 53 5
FROM TEMP1 Y 1999-01-02 Sat 1 7 53 6
, TEMP1 D 1999-01-03 Sun 2 1 53 7
WHERE Y.N IN (0,2)) 1999-01-04 Mon 2 2 1 1
SELECT CHAR (DT2, ISO) DTE 1999-01-05 Tue 2 3 1 2
, SUBSTR (DAYNAME (DT2) ,1,3) DY 1999-01-06 Wed 2 4 1 3
, WEEK (DT2) WK 2000-12-27 Wed 53 4 52 3
, DAYOFWEEK (DT2) DY 2000-12-28 Thu 53 5 52 4
,WEEK_ISO(DT2) WI 2000-12-29 Fri 53 6 52 5
,DAYOFWEEK ISO (DT2) DI 2000-12-30 sat 53 7 52 6
FROM TEMP2 2000-12-31 Sun 54 1 52 7
ORDER BY 1; 2001-01-01 Mon 1 2 1 1
2001-01-02 Tue 1 3 1 2
2001-01-03 Wed 1 4 1 3
2001-01-04 Thu 1 5 1 4
2001-01-05 Fri 1 6 1 5
2001-01-06 sat 1 7 1 &6

Figure 402, WEEK _| SO function example

YEAR

Returns a four-digit year value in the range 0001 to 9999 that represents the year (including
the century). Theinput is a date or timestamp (or equivalent) value. The output is integer.

SELECT DT1 ANSWER
, YEAR (DT1) AS YR ======================
,WEEK (DT1) AS WK DT1 YR WK
FROM SCALAR; . mmm e ———— —---
04/22/1996 1996 17
08/15/1996 1996 33
01/01/0001 1 1

Figure 403, YEAR and WEEK functions example

"+" PLUS

The PLUS function is same old plus sign that you have been using since you were akid. One
can use it the old fashioned way, or as if it were normal a DB2 function - with one or two in-
put items. If there isasingle input item, then the function acts as the unary "plus" operator. If
there are two items, the function adds them:

146 Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

SELECT ID ANSWER

, SALARY =============================

, "+" (SALARY) AS S2 ID SALARY S2 S3

,"+" (SALARY, ID) AS S3 S mmmmmmmm mmmmmm—m —mm——-—-
FROM STAFF 10 18357.50 18357.50 18367.50
WHERE ID < 40 20 18171.25 18171.25 18191.25
ORDER BY 1ID; 30 17506.75 17506.75 17536.75

Figure 404, PLUS function examples

Both the PLUS and MINUS functions can be used to add and subtract numbers, and also date
and time values. For the latter, one side of the equation has to be a date/time value, and the
other either adate or time duration (a numeric representation of a date/time), or a specified
date/time type. To illustrate, below are three different waysto add one year to a date:

SELECT EMPNO

, CHAR (BIRTHDATE, ISO) AS BDATE1l
, CHAR (BIRTHDATE + 1 YEAR, ISO) AS BDATE2
,CHAR ("+" (BIRTHDATE, DEC (00010000, 8)), ISO) AS BDATE3

,CHAR ("+" (BIRTHDATE, DOUBLE (1) , SMALLINT (1)), ISO) AS BDATE4
FROM EMPLOYEE
WHERE EMPNO < 000040’
ORDER BY EMPNO; ANSWER

000010 1933-08-24 1934-08-24 1934-08-24 1934-08-24
000020 1948-02-02 1949-02-02 1949-02-02 1949-02-02
000030 1941-05-11 1942-05-11 1942-05-11 1942-05-11

Figure 405, Adding one year to date value

"-" MINUS
The MINUS works the same way as the PLUS function, but does the opposite:

SELECT ID ANSWER

, SALARY =========os=ssososososss=======

,"-" (SALARY) AS S2 ID SALARY 82 S3

,"-" (SALARY, ID) AS S3 T
FROM STAFF 10 18357.50 -18357.50 18347.50
WHERE ID < 40 20 18171.25 -18171.25 18151.25
ORDER BY ID; 30 17506.75 -17506.75 17476.75

Figure 406, MINUS function examples

"* MULTIPLY
The MULTIPLY function is used to multiply two numeric values:
SELECT ID ANSWER
, SALARY e —
, SALARY * ID AS S2 ID SALARY S2 S3
,"*" (SALARY,ID) AS S3 e mmmmmmmm e mmmeee -
FROM STAFF 10 18357.50 183575.00 183575.00
WHERE ID < 40 20 18171.25 363425.00 363425.00
ORDER BY ID; 30 17506.75 525202.50 525202.50

Figure 407, MULTIPLY function examples

"/" DIVIDE

The DIVIDE function is used to divide two numeric values:

Scalar Functions 147

SELECT ID
, SALARY
,SALARY / ID

,"/" (SALARY, ID)
FROM STAFF
WHERE ID < 40

ORDER BY 1ID;

AS S2
AS S3

Figure 408, DIVIDE function examples

"1I" CONCAT
Same as the CONCAT function:
SELECT 1D
,NAME || "2’
,NAME CONCAT 'Z’
, n | | n (NAME, IZI)
, CONCAT (NAME, ' Z’
FROM STAFF
WHERE LENGTH (NAME) <

ORDER BY ID;

)

5

AS
AS
As
As

N1
N2
N3
N4

Figure 409, CONCAT function examples

148

Graeme Birchall ©

ANSWER
ID SALARY S2 S3
10 18357.50 1835.750 1835.750
20 18171.25 908.562 908.562
30 17506.75 583.558 583.558
ANSWER
ID N1 N2 N3 N4

110 NganZ NganZ NganZ NganZ
Luz Luz Luz Luz
270 LeaZ LeaZ LeaZ LeaZ

Scalar Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

User Defined Functions

Many problems that are really hard to solve using raw SQL become surprisingly easy to ad-
dress, once one writes a simple function. This chapter will cover some of the basics of user-
defined functions. These can be very roughly categorized by their input source, their output
type, and the language used:

e External scalar functions use an external process (e.g. a C program), and possibly also an
external data source, to return asingle value.

e External table functions use an external process, and possibly also an external data
source, to return a set of rows and columns.

e Internal sourced functions are variations of an existing DB2 function
e Internal scalar functions use compound SQL code to return a single value.
o Internal table functions use compound SQL code to return a set of rows and columns

This chapter will briefly go over the last three types of function listed above. See the official
DB2 documentation for more details.

WARNING: As of the time of writing, thereis aknown bug in DB2 that causes the prepare
cost of adynamic SQL statement to go up exponentially when a user defined function that is
written in the SQL language is referred to multiple timesin asingle SQL statement.

Sourced Functions

A sourced function is used to redefine an existing DB2 function so asto in some way restrict
or enhance its applicability. Below isthe basic syntax:
7

L SPECIFIC— specific-name J }

F SOURCE —E function-name N

w CREATE FUNCTION — function-name — (

R :
L parm-name data-type

F RETURNS — data-type

SPECIFIC— specific-name ————————————

function-name —() —
L£data-type

Figure 410, Sourced function syntax

Below isascalar function that is a variation on the standard DIGITS function, but which only
works on small integer fields:

CREATE FUNCTION digi_int (SMALLINT)
RETURNS CHAR (5)
SOURCE SYSIBM.DIGITS (SMALLINT) ;

Figure 411, Create sourced function

Here is an example of the functionin use:

User Defined Functions 149

Graeme Birchall ©

SELECT id AS ID ANSWER
,DIGITS (id) AS I2 —=============
,digi_int(id) AS I3 ID I2 I3
FROM staff e
WHERE id < 40 10 00010 00010
ORDER BY id; 20 00020 00020

30 00030 00030
Figure 412, Using sourced function - works

By contrast, the following statement will fail because the input is an integer field:

SELECT id ANSWER
,digi int (INT(id)) =======
FROM staff <error>

WHERE id < 50;
Figure 413, Using sourced function - fails

Sourced functions are especially useful when one has created a distinct (data) type, because
these do not come with any of the usual DB2 functions. To illustrate, in the following exam-
ple adistinct typeis created, then atable using the type, then two rows are inserted:

CREATE DISTINCT TYPE us dollars AS DEC(7,2) WITH COMPARISONS;
CREATE TABLE customers

(ID SMALLINT NOT NULL

,balance us_dollars NOT NULL) ;

INSERT INTO customers VALUES (1 ,111.11), (2 ,222.22); ==========

SELECT * - mmm——--
FROM customers 1 111.11
ORDER BY 1ID; 2 222.22

Figure 414, Create distinct type and test table

The next query will fail because there is currently no multiply function for "us_dollars":

SELECT ID ANSWER
,balance * 10 =======
FROM customers <error>

ORDER BY ID;
Figure 415, Do multiply - fails

The enable the above, we have to create a sourced function:

CREATE FUNCTION "*" (us_dollars, INT)
RETURNS us_dollars
SOURCE SYSIBM."*" (DECIMAL, INT) ;

Figure 416, Create sourced function

Now we can do the multiply:

SELECT ID ANSWER
,balance * 10 AS NEWBAL m=========
FROM customers ID NEWBAL
ORDER BY 1ID; . mmme— o
1 1111.10
2 2222.20

Figure 417, Do multiply - works

For the record, here is another way to write the same:

150 Sourced Functions

DB2 UDB/V8.1 Cookbook ©

SELECT ID ANSWER
,"*" (balance,10) AS NEWBAL ==========
FROM customers ID NEWBAL
ORDER BY ID; e e
1 1111.10
2 2222.20

Figure 418, Do multiply - works

Scalar Functions

A scalar function has as input a specific number of values (i.e. not atable) and returnsasingle
output item. Here is the syntax (also for table function):
o

v
L parm-

F RETURNS data-type }
[TABLE — Lcolumn-name ——column-type —) J

w CREATE FUNCTION — function-name — (

)

pp—— data-type

~LANGUAGE SQL, - NOT DETERMINISTIC - ~ EXTERNAL ACTION-,
} L DETERMINISTIC L NO EXTERNAL ACTION }
~READS SQLDATA |~ STATIC DISPATCH | CALLED ON NULL INPUT
} L CONTAINS SQL - }
} L PREDICATES —(— predicate-list) }

F RETURN _ value N
FNULL
u full-select —

L WITH £ common-table-expression
Figure 419, Scalar and Table function syntax

Description

e FUNCTION NAME: A qudlified or unqualified name, that a ong with the number and
type of parameters, uniquely identifies the function.

e RETURNS: Thetype of valuereturned, if ascalar function. For atable function, the list
of columns, with their type.

o LANGUAGE SQL: Thisthe default, and the only one that is supported.

o DETERMINISTIC: Specifies whether the function always returns the same result for a
given input. For example, a function that multiplies the input number by ten is determi-
nistic, whereas a function that gets the current timestamp is not. The optimizer needs to
know thisinformation.

o EXTERNAL ACTION: Whether the function takes some action, or changes some object
that is not under the control of DB2. The optimizer needs to know this information.

User Defined Functions 151

Graeme Birchall ©

o READS SQL DATA: Whether the function reads SQL data only, or doesn't even do that.
The function cannot modify any DB2 data, except via an external procedure call.

e STATIC DISPATCH: At function resolution time, DB2 chooses the function to run
based on the parameters of the function.

e CALLED ON NULL INPUT: Thefunctionis called, even when the input is null.

o PREDICATES: For predicates using this function, this clause lists those that can use the
index extensions. If this clause is specified, function must also be DETERMINISTIC
with NO EXTERNAL ACTION. Seethe DB2 documentation for details.

e RETURN: Thevaue or table (result set) returned by the function.
Input and Output Limits

One can have multiple scalar functions with the same name and different input/output data
types, but not with the same name and input/output types, but with different lengths. So if one
wants to support al possible input/output lengths for, say, varchar data, one has to define the
input and output lengths to be the maximum allowed for the field type.

For varchar input, one would need an output length of 32,672 bytes to support all possible
input values. But thisis a problem, because it is very close to the maximum allowable table
(row) length in DB2, which is 32,677 bytes.

Decimal field types are even more problematic, because one needs to define both a length and
ascale. Toillustrate, imagine that one defines the input as being of type decimal (31,12). The
following input values would be treated thus:

e A decimal(10,5) value would be fine.
e A decimal(31,31) value would lose precision.
e A decimal(31,0) value may fail becauseit istoo large.

See page 301 for adetailed description of this problem.

Examples

In addition to the examples shown in this section, there are a so the following:
e Check character input is a numeric value - page 298

e Covert numeric datato character (right justified) - page 300.

e Locate string in input, ablock at atime - page 268.

e Sort character field contents - page 313.

e Strip characters from text - page 311.

Below isavery simple scalar function - that always returns zero:
CREATE FUNCTION returns zero() RETURNS SMALLINT RETURN O;

ANSWER

SELECT id AS ID ======
,returns_zero() AS ZZ ID ZZ

FROM staff -- -
WHERE id = 10; 10 0

Figure 420, Smple function usage

152 Scalar Functions

DB2 UDB/V8.1 Cookbook ©

Two functions can be created with the same name. Which oneis used depends on the input
type that is provided:

CREATE FUNCTION calc(inval SMALLINT) RETURNS INT RETURN inval * 10;
CREATE FUNCTION calc(inval INTEGER) RETURNS INT RETURN inval * 5;

SELECT id AS ID ANSWER
,calc (SMALLINT (id)) AS C1 ==========
,calc (INTEGER (id)) AS C2 ID C1 C2
FROM staff - === ===
WHERE id < 30 10 100 50
ORDER BY id; 20 200 100

DROP FUNCTION calc (SMALLINT) ;
DROP FUNCTION calc (INTEGER) ;

Figure 421, Two functions with same name

Below is an example of afunction that is not deterministic, which means that the function
result can not be determined based on the inpuit:
CREATE FUNCTION rnd(inval INT)

RETURNS SMALLINT
NOT DETERMINISTIC

RETURN RAND () * 50; ANSWER
SELECT id AS ID ID RND

,rnd (1) AS RND R
FROM staff 10 37
WHERE id < 40 20 8
ORDER BY id; 30 42

Figure 422, Not deterministic function

The next function uses a query to return a single row/column value:

CREATE FUNCTION get_sal(inval SMALLINT)
RETURNS DECIMAL(7,2)
RETURN SELECT salary

FROM staff

WHERE ID = inval; ANSWER
SELECT id AS ID ID SALARY
,get_sal (id) AS SALARY T
FROM staff 10 18357.50
WHERE id < 40 20 18171.25
ORDER BY id; 30 17506.75

Figure 423, Function using query

More complex SQL statements are also allowed - aslong as the result (in ascalar function) is
just one row/column value. In the next example, the either the maximum salary in the same
department is obtained, or the maximum salary for the same year - whatever is higher:

User Defined Functions 153

CREATE FUNCTION max sal (inval SMALLINT)
RETURNS DECIMAL(7,2)
RETURN WITH

ddd (max_sal) AS

(SELECT MAX(S2.salary)

FROM staff S1
,staff S2
WHERE S1.id = 1inval
AND Sl.dept = s2.dept)

,yyy (max_sal) AS
(SELECT MAX(S2.salary)

FROM staff S1
,staff S2
WHERE S1.id = inval
AND Sl.years = s2.years)

SELECT CASE
WHEN ddd.max_sal > yyy.max sal
THEN ddd.max_sal
ELSE yyy.max sal
END
FROM ddd, yyyi;

Graeme Birchall ©

ANSWER
SELECT id AS ID ====================
,salary AS SAL1 ID SALl SAL2
,max_sal (id) AS SAL2 - mmmm s —m -
FROM staff 10 18357.50 22959.20
WHERE id < 40 20 18171.25 18357.50
ORDER BY id; 30 17506.75 19260.25

Figure 424, Function using common table expression

A scalar or table function cannot change any data, but it can be used in aDML statement. In
the next example, afunction is used to remove al "e" characters from the name column:

CREATE FUNCTION remove_e (instr VARCHAR(50))
RETURNS VARCHAR (50)
RETURN replace (instr,’e’,’’);

UPDATE staff
SET name = remove_ e (name)
WHERE id < 40;

Figure 425, Function used in update

Compound SQL Usage

A function can use compound SQL, with the following limitations:
e The statement delimiter, if needed, cannot be a semi-colon.

e No DML statements are allowed.

Below is an example of a scalar function that uses compound SQL to reverse the contents of a

text string:

154

Scalar Functions

DB2 UDB/V8.1 Cookbook ©

--#SET DELIMITER !

CREATE FUNCTION reverse (instr VARCHAR(50))

IMPORTANT

This example

RETURNS VARCHAR (50) uses an "I"
BEGIN ATOMIC as the stmt
DECLARE outstr VARCHAR(50) DEFAULT '’ ; delimiter.
DECLARE curbyte SMALLINT DEFAULT O0;
SET curbyte = LENGTH (RTRIM (instr)) ;
WHILE curbyte >= 1 DO
SET outstr = outstr || SUBSTR(instr,curbyte,1l);
SET curbyte = curbyte - 1;
END WHILE;
RETURN outstr;
END!
ANSWER
SELECT id AS ID ====================
, name AS NAME1 ID NAME1 NAME2
,reverse (name) AS NAME2 B i R
FROM staff 10 Sanders srednaS
WHERE id < 40 20 Pernal lanreP

ORDER BY id!
Figure 426, Function using compound SQL

30 Marenghi ihgneraM

Because compound SQL is alanguage with basic logical constructs, one can add code that
does different things, depending on what input is provided. To illustrate, in the next example

the possible output values are as follows:
e [ftheinputisnull, the output is set to null.
o [f thelength of the input string isless than 6, an error is flagged.

e [f thelength of theinput string islessthan 7, the result is set to -1.

e Otherwise, the result is the length of the input string.

Now for the code:
--#SET DELIMITER !

CREATE FUNCTION check_len(instr VARCHAR (50))
RETURNS SMALLINT
BEGIN ATOMIC
IF instr IS NULL THEN
RETURN NULL;
END IF;
IF length(instr) < 6 THEN
SIGNAL SQLSTATE ’'75001'
SET MESSAGE_TEXT = ’'Input string is < 6';
ELSEIF length(instr) < 7 THEN

RETURN -1;
END IF;
RETURN length(instr) ;
END!
SELECT id AS ID
,name AS NAME1l
,check len(name) AS NAME2
FROM staff
WHERE id < 60

ORDER BY id!
Figure 427, Function with error checking logic

IMPORTANT

This example

uses an "!I"

as the stmt

delimiter.
ANSWER
ID NAME1 NAME2
10 Sanders 7
20 Pernal -1
30 Marenghi 8
40 O’Brien 7
<error>

The above query failed when it got to the name "Hanes"', which isless than six bytes long.

User Defined Functions

155

Graeme Birchall ©

Table Functions

A table function is very similar to a scalar function, except that it returns a set of rows and
columns, rather than asingle value. Hereis an example:

CREATE FUNCTION get_ staff ()

RETURNS TABLE (ID SMALLINT
, NAME VARCHAR (9)
, YR SMALLINT)
RETURN SELECT id
, name
,years ANSWER
FROM staff; ==============
ID NAME YR
SELECT * e e
FROM TABLE (get_staff()) AS s 10 Sanders 7
WHERE id < 40 20 Pernal 8
ORDER BY id; 30 Marenghi 5
Figure 428, Smple table function
NOTE: See page 151 for the create table function syntax diagram.
Description
The basic syntax for selecting from atable function goes as follows:
w FROM — TABLE — (— function-name — ()—) }

M correlation-name L() N

i column-name — 1!

Figure 429, Table function usage - syntax
Note the following:

e TheTABLE keyword, the function name (obviously), the two sets of parenthesis, and a
correlation name, are al required.

e |f thefunction hasinput parameters, they are all required, and their type must match.

e Optionally, onecan list al of the columns that are returned by the function, giving each
an assigned name

Below is an example of afunction that uses all of the above features:
CREATE FUNCTION get st (inval INTEGER)

RETURNS TABLE (ID SMALLINT
, NAME VARCHAR (9)
, YR SMALLINT)
RETURN SELECT id
,name
,years
FROM staff ANSWER
WHERE id = inval; ==============
ID NNN YY
SELECT 2 e
FROM TABLE (get_st (30)) AS sss (ID, NNN, YY); 30 Marenghi 5

Figure 430, Table function with parameters

156 Table Functions

DB2 UDB/V8.1 Cookbook ©

Examples

A table function returns atable, but it doesn't have to touch atable. To illustrate, the follow-
ing function creates the data on the fly:
CREATE FUNCTION make_data()

RETURNS TABLE (KY SMALLINT
,DAT CHAR(5))

RETURN WITH templ (k#) AS (VALUES (1), (2),(3)) ANSWER
SELECT ki# ========

,DIGITS (SMALLINT (k#)) KY DAT
FROM templ; - -----
1 00001
SELECT * 2 00002
FROM TABLE (make_data()) AS ttt; 3 00003

Figure 431, Table function that creates data

The next example uses compound SQL to first flag an error if one of the input valuesis too
low, then find the maximum salary and related ID in the matching set of rows, then fetch the
same rows - returning the two previously found values at the same time:

CREATE FUNCTION staff_list(lo_key INTEGER IMPORTANT
,1lo_sal INTEGER) ============
RETURNS TABLE (id SMALLINT This example
,salary DECIMAL(7,2) uses an "!"
,max_sal DECIMAL(7,2) as the stmt
,1d max SMALLINT) delimiter.

LANGUAGE SQL
READS SQL DATA
EXTERNAL ACTION
DETERMINISTIC
BEGIN ATOMIC
DECLARE hold sal DECIMAL(7,2) DEFAULT O;
DECLARE hold _key SMALLINT;
IF lo_sal < 0 THEN
SIGNAL SQLSTATE ’75001'

SET MESSAGE TEXT = ’'Salary too low’;
END IF;
FOR get max AS

SELECT id AS in _key

,salary As in sal
FROM staff
WHERE id >= lo _key
DO
IF in sal > hold sal THEN

SET hold_sal = in_sal;
SET hold key = in key;
END IF;
END FOR;
RETURN
SELECT id
,salary
,hold sal
,hold key ANSWER
FROM staff ============================
WHERE id >= lo_ key; ID SALARY MAX SAL ID MAX
END! i
70 16502.83 22959.20 160
SELECT * 80 13504.60 22959.20 160
FROM TABLE (staff_list(66,1)) AS ttt 90 18001.75 22959.20 160
WHERE id < 111 100 18352.80 22959.20 160
ORDER BY id! 110 12508.20 22959.20 160

Figure 432, Table function with compound SQL

User Defined Functions 157

Graeme Birchall ©

158 Table Functions

DB2 UDB/V8.1 Cookbook ©

Order By, Group By, and Having

Introduction

The GROUPBY statement is used to combine multiple rows into one. The HAVING expres-
sion is where one can select which of the combined rows are to be retrieved. In this sense, the
HAVING and the WHERE expressions are very similar. The ORDER BY statement is used
to sequence the rows in the final output.

Order By
, ASC ’
F ORDER BY column name r }
column# LDESC —
expression —

Figure 433, ORDER BY syntax

The ORDER BY statement can only be applied to the final result set of the SQL statement.
Unlike the GROUP BY, it can not be used on any intermediate result set (e.g. a sub-query or
a nested-table expression). Nor can it be used in aview definition.

Sample Data

CREATE VIEW seq data(coll,col2) AS VALUES
(labI,IXyl),(IABI,IXyl),(laCI,IXYI),(IABI,IXYI),(IAbI,Il2I);
Figure 434, ORDER BY sample data definition

Order by Examples

SELECT coll ANSWER
,col2 =========
FROM seqg_data COL1 COL2
ORDER BY coll ASC e —e e
,col2; ab xy
ac XY
Ab 12
AB Xy
AB XY

Figure 435, Smple ORDER BY

Observe how in the above example al of the lower case data comes before the upper case
data. Usethe TRANSLATE function to display the data in case-independent order:

SELECT coll ANSWER
,col2 =========
FROM seqg_data COL1 COL2
ORDER BY TRANSLATE (coll) AsC ——-m ———-
, TRANSLATE (col2) ASC Ab 12
ab Xy
AB XY
AB Xy
ac XY

Figure 436, Case insensitive ORDER BY

Order By, Group By, and Having 159

Graeme Birchall ©

One does not have to specify the column in the ORDER BY in the select list though, to the
end-user, the data may seem to be random order if one leavesit out:

SELECT col2 ANSWER
FROM seq_data ======
ORDER BY coll COL2
,col2; -
Xy
XY
12
Xy
XY

Figure 437, ORDER BY on not-displayed column

In the next example, the datais (primarily) sorted in descending sequence, based on the sec-
ond byte of the first column:

SELECT coll ANSWER
,col2 ————=====
FROM seqg_data COL1l COL2
ORDER BY SUBSTR(coll,2) DESC ——em -

’ col2 ac XY

,1; AB Xy

AB XY

Ab 12

ab Xy

Figure 438, ORDER BY second byte of first column

If acharacter columnis defined FOR BIT DATA, the dataisreturned in internal ASCII se-
guence, as opposed to the standard collating sequence where’a’ <’A’<’b’<'B’. In ASCI| se-
guence all upper case characters come before all lower case characters. In the following ex-
ample, the HEX function is used to display ordinary character datain bit-data order:

SELECT coll ANSWER
,HEX (coll) AS hexl ===================
,col2 COL1 HEX1 COL2 HEX2
,HEX (col2) AS hex2 meee mmmm —mmm —-o-
FROM seq_data AB 4142 XY 5859
ORDER BY HEX (coll) AB 4142 xy 7879
,HEX (col2) Ab 4162 12 3132

Figure 439, ORDER BY in hit-data sequence

Arguably, either the BLOB or CLOB functions should be used (instead of HEX) to get the
datain ASCII sequence. However, when these two were tested (in DB2BATCH) they caused
the ORDER BY tofail.

Notes

e Specifying the same field multiple timesin an ORDER BY list isallowed, but silly. Only
the first specification of the field will have any impact on the data output order.

e |fthe ORDER BY column list does not uniquely identify each row, those rows with du-
plicate values will come out in random order. Thisis almost always the wrong thing to do
when the data is being displayed to an end-user.

o Usethe TRANSLATE function to order data regardless of case. Note that thistrick may
not work consistently with some European character sets.

e NULL values always sort high.

160 Order By

DB2 UDB/V8.1 Cookbook ©

Group By and Having

The GROUP BY statement is used to group individual rows into combined sets based on the
value in one, or more, columns. The GROUPING SETS clause is used to define multiple in-
dependent GROUP BY clausesin one query. The ROLLUP and CUBE clauses are short-

hand forms of the GROUPING SETS statement.

F GROUP BY £ éxpression

— GROUPING SETS —(

grand-total \

»

expression ‘) J
ROLLUP stmt (see below)—|
CUBE stmt (see below) ——

’

| ROLLUP—(

expression

(iéxpression l)

(-)
7

’

| CUBE — (

—(-)

expression

(iéxpression l)

T

search-condition(s)

F HAVING

Figure 440, GROUP BY syntax

GROUP BY Sample Data

CREATE VIEW employee view AS

SELECT SUBSTR (workdept,1,1) AS di
,workdept AS dept
, 8ex AS sex
, INTEGER (salary) AS salary
FROM employee
WHERE workdept < ‘D20’ ;
COMMIT;
SELECT *
FROM employee view

ORDER BY 1,2,3,4;

Figure 441, GROUP BY Sample Data

Simple GROUP BY Statements

ANSWER

D1 DEPT SEX SALARY
A AQ00 F 52750
A A00 M 29250
A AQ00 M 46500
B BO01 M 41250
c co1r F 23800
cC Co01 F 28420
c co1r F 38250
D D11 F 21340
D Dl1 F 22250
D D11 F 29840
D D11 M 18270
D D11 M 20450
D D11 M 24680
D D11 M 25280
D D11 M 27740
D D11 M 32250

A simple GROUP BY is used to combine individual rows into a distinct set of summary rows.

Order By, Group By, and Having

161

Graeme Birchall ©

Rules and Restrictions

There can only be one GROUP BY per SELECT. Multiple select statementsin the same
guery can each have their own GROUP BY.

Every field in the SELECT list must either be specified in the GROUP BY, or must have
a column function applied against it.

The result of asimple GROUP BY (i.e. with no GROUPING SETS, ROLLUP or CUBE
clause) is always a distinct set of rows, where the unique identifier is whatever fields
were grouped on.

There is no guarantee that the rows resulting from a GROUP BY will come back in any
particular order, unless an ORDER BY is also specified.

Variable length character fields with differing numbers on trailing blanks are treated as
equd in the GROUP. The number of trailing blanks, if any, in the result is unpredictable.

When grouping, al null valuesin the GROUP BY fields are considered equal.

Sample Queries

In thisfirst query we group our sample data by the first three fieldsin the view:

SELECT dl, dept, sex ANSWER
,SUM (salary) AS salary ========================
, SMALLINT (COUNT (*)) AS #rows D1 DEPT SEX SALARY #ROWS
FROM employee view ~ —= —--- - —ommo o oo
WHERE dept <> ’ABC’ A A00 F 52750 1
GROUP BY d1, dept, sex A AOO0 M 75750 2
HAVING dept > 'A0’ B B0l M 41250 1
AND (SUM(salary) > 100 c Cco1 F 90470 3
OR MIN(salary) > 10 D D11 F 73430 3
OR COUNT (*) <> 22) D D11 M 148670 6

ORDER BY dl1, dept, sex;
Figure 442, Smple GROUP BY

Thereis no need to have the afield in the GROUP BY in the SELECT list, but the answer
really doesn't make much sense if one does this:

SELECT sex ANSWER
,SUM (salary) AS salary ================

, SMALLINT (COUNT (*)) AS #rows SEX SALARY #ROWS

FROM employee view ——- ——mmom o —
WHERE sex IN ('F’,'M’") F 52750 1
GROUP BY dept F 90470 3
, 8ex F 73430 3

ORDER BY sex; M 75750 2
M 41250 1

M 148670 6

Figure 443, GROUP BY on non-displayed field

One can also do aGROUP BY on aderived field, which may, or may not be, in the statement
SELECT list. Thisis an amazingly stupid thing to do:

SELECT SUM (salary) AS salary ANSWER

, SMALLINT (COUNT (*)) AS #rows ============
FROM employee view SALARY #ROWS
WHERE dl <> X' mmm e — e
GROUP BY SUBSTR (dept,3,1) 128500 3
HAVING COUNT (*) <> 99; 353820 13

Figure 444, GROUP BY on derived field, not shown

162

Group By and Having

DB2 UDB/V8.1 Cookbook ©

One can not refer to the name of a derived column in a GROUP BY statement. Instead, one
has to repeat the actual derivation code. One can however refer to the new column namein an
ORDERBY:

SELECT SUBSTR (dept,3,1) AS wpart ANSWER
,Sw(salary) AS Salary =—=================
, SMALLINT (COUNT (*)) AS #rows WPART SALARY #ROWS
FROM employee view ~ —mmmm —mmeee oo
GROUP BY SUBSTR (dept,3,1) 1 353820 13
ORDER BY wpart DESC; 0 128500 3

Figure 445, GROUP BY on derived field, shown

GROUPING SETS Statement

The GROUPING SETS statement enable one to get multiple GROUP BY result setsfrom a
single statement. It isimportant to understand the difference between nested (i.e. in secondary
parenthesis), and non-nested GROUPING SETS sub-phrases:

o A nested list of columns works as asimple GROUP BY.

e A non-nested list of columns works as separate simple GROUP BY statements, which are
then combined in an implied UNION ALL.

GROUP BY GROUPING SETS ((A,B,C)) is equivalent to GROUP BY A
,B
,C

GROUP BY GROUPING SETS (A,B,C) is equivalent to GROUP BY A
UNION ALL
GROUP BY B
UNION ALL
GROUP BY C

GROUP BY GROUPING SETS (A, (B,C)) is equivalent to GROUP BY A
UNION ALL

GROUP BY B

,BY C

Figure 446, GROUPING SETSin parenthesis vs. not

Multiple GROUPING SETS in the sasme GROUP BY are combined together as if they were
simplefieldsin aGROUP BY list:

GROUP BY GROUPING SETS (A) is equivalent to GROUP BY A
,GROUPING SETS (B) ,B
,GROUPING SETS (C) ,C

GROUP BY GROUPING SETS (A) is equivalent to GROUP BY A
,GROUPING SETS ((B,C)) /B

,C

GROUP BY GROUPING SETS (A) is equivalent to GROUP BY A

,GROUPING SETS (B,C) B
UNION ALL

GROUP BY A

,C

Figure 447, Multiple GROUPING SETS
One can mix simple expressions and GROUPING SETS in the same GROUP BY :

GROUP BY A is equivalent to GROUP BY
,GROUPING SETS ((B,C))

Figure 448, Smple GROUP BY expression and GROUPING SETS combined

Order By, Group By, and Having 163

Graeme Birchall ©

Repeating the same field in two parts of the GROUP BY will result in different actions de-
pending on the nature of the repetition. The second field reference isignored if a standard
GROUPBY isbeing made, and used if multiple GROUP BY statements are implied:

GROUP BY A is equivalent to GROUP BY A
/B ,B
,GROUPING SETS ((B,C)) ,C

GROUP BY A is equivalent to GROUP BY A
/B ,B
,GROUPING SETS (B,C) ,C

UNION ALL
GROUP BY A
,B

GROUP BY A is equivalent to GROUP BY A
/B ,B
,C ,C
,GROUPING SETS (B,C) UNION ALL

GROUP BY A
,B
,C
Figure 449, Mixing simple GROUP BY expressions and GROUPING SETS
A single GROUPING SETS statement can contain multiple sets of implied GROUP BY
phrases (obvioudly). These are combined using implied UNION ALL statements:
GROUP BY GROUPING SETS ((A,B,C) is equivalent to GROUP BY A
, (A, B) ,B
. (C)) ,C
UNION ALL
GROUP BY A
,B
UNION ALL
GROUP BY C
GROUP BY GROUPING SETS ((A) is equivalent to GROUP BY A
. (B,C) UNION ALL
, (RA) GROUP BY B
LA ,C
, ((C))) UNION ALL
GROUP BY A
UNION ALL
GROUP BY A
UNION ALL

GROUP BY C
Figure 450, GROUPING SETSwith multiple components

The null-field list "()" can be used to get agrand total. Thisis equivalent to not having the
GROUPBY at all.

GROUP BY GROUPING SETS (,C) is equivalent to GROUP BY A
, (A,B) B

. (B) ,C

, () UNION ALL
GROUP BY A

,B

is equivalent to UNION ALL
GROUP BY A

UNION ALL

ROLLUP (A, B, C) grand-totl
Figure 451, GROUPING SET with multiple components, using grand-total

The above GROUPING SETS statement is equivalent to a ROLLUP(A,B,C), while the next
isequivalent to a CUBE(A,B,C):

164 Group By and Having

DB2 UDB/V8.1 Cookbook ©

GROUP BY GROUPING SETS Q) is equivalent to GROUP BY

UNION A
GROUP B

UNION ALL
GROUP BY A

UNION ALL
GROUP BY B
is equivalent to ,C
UNION ALL
GROUP BY A
UNION ALL
CUBE (A, B, C) GROUP BY B
UNION ALL
GROUP BY C
UNION ALL
grand-totl

Figure 452, GROUPING SET with multiple components, using grand-total
SQL Examples

Thisfirst example has two GROUPING SETS. Because the second isin nested parenthesis,
the result is the same as a simple three-field group by:

SELECT di ANSWER
,dept ==============================
, sex D1 DEPT SEX SAL #R DF WF SF
,SUM (salary) AS sal e
, SMALLINT (COUNT (*)) AS #r A AOO F 52750 1 0 0 O
, GROUPING (d1) AS f1 A AOO0 M 75750 2 0 0 O
, GROUPING (dept) AS fd B B01 M 41250 1 0 0 O
, GROUPING (sex) AS fs C Co1 F 90470 3 0 0 O

FROM employee view D D11 F 73430 3 0 0 O

GROUP BY GROUPING SETS (d1) D D11 M 148670 6 0 0 O

,GROUPING SETS ((dept,sex))
ORDER BY d1

,dept

, Sex;

Figure 453, Multiple GROUPING SETS, making one GROUP BY

NOTE: The GROUPING(field-name) column function is used in these examples to identify
what rows come from which particular GROUPING SET. A value of 1 indicates that the cor-
responding data field is null because the row is from of a GROUPING SET that does not in-
volve thisrow. Otherwise, the valueis zero.

In the next query, the second GROUPING SET is not in nested-parenthesis. The query is
therefore equivaent to GROUP BY D1, DEPT UNION ALL GROUPBY D1, SEX:

SELECT dl ANSWER
,dept ==============================
, Sex D1 DEPT SEX SAL #R F1 FD FS
,SUM (salary) AS sal R e R
, SMALLINT (COUNT (*)) AS #r A A00 - 128500 3 0 0 1
, GROUPING (d1) AS f1 A - F 52750 1 0 1 O
, GROUPING (dept) AS fd A - M 75750 2 0 1 O
, GROUPING (sex) AS fs B BO1l - 41250 1 0 O 1
FROM employee view B - M 41250 1 0 1 ©
GROUP BY GROUPING SETS (dl) c co1 - 90470 3 0 0 1
,GROUPING SETS (dept, sex) c - F 90470 3 0 1 O
ORDER BY dl D D11 - 222100 9 0 0 1
,dept D - F 73430 3 0 1 O
, sex; D - M 148670 6 0 1 O

Figure 454, Multiple GROUPING SETS, making two GROUP BY results

Order By, Group By, and Having 165

Graeme Birchall ©

It is generally unwise to repeat the same field in both ordinary GROUP BY and GROUPING
SETS statements, because the result is often rather hard to understand. To illustrate, the fol-
lowing two queries differ only in their use of nested-parenthesis. Both of them repeat the
DEPT field:

o Inthefirst, the repetition isignored, because what is created is an ordinary GROUP BY
on al threefields.

o In the second, repetition isimportant, because two GROUP BY statements are implicitly
generated. Thefirstison D1 and DEPT. The secondis on D1, DEPT, and SEX.

SELECT di1 ANSWER
,dept ==============================
,sex D1 DEPT SEX SAL #R F1 FD FS
,SUM (salary) AS sal @ @ —-mmmmmmm e m -
, SMALLINT (COUNT (*)) AS #r A AOO0 F 52750 1 0 0 O
, GROUPING (d1) AS f1 A AO0 M 75750 2 0 0 O
, GROUPING (dept) AS fd B B0l M 41250 1 0 0 O
, GROUPING (sex) AS fs C CoL F 90470 3 0 0 O
FROM employee view D D11 F 73430 3 0 0 O
GROUP BY di D D11 M 148670 6 0 0 O
,dept
, GROUPING SETS ((dept,sex))
ORDER BY dil
,dept
,8ex;
Figure 455, Repeated field essentially ignored
SELECT di1 ANSWER
,dept ==============================
,sex D1 DEPT SEX SAL #R F1 FD FS
,SUM (salary) AS sal @ @ —ommmmmmm e m oo
, SMALLINT (COUNT (*)) AS #r A AOO0 F 52750 1 0 0 O
, GROUPING (d1) AS f1 A AO0 M 75750 2 0 0 O
, GROUPING (dept) AS fd A AOO0 - 128500 3 0 0 1
, GROUPING (sex) AS fs B B0l M 41250 1 0 0 O
FROM employee view B BO1 - 41250 1 O O 1
GROUP BY di1 C CoL F 90470 3 0 0 O
, DEPT c coir - 90470 3 0 0 1
,GROUPING SETS (dept,sex) D D11 F 73430 3 0 0 O
ORDER BY dil D D11 M 148670 6 0 0 O
,dept D D11 - 222100 9 0 0 1
,sex;
Figure 456, Repeated field impacts query result
The above two queries can be rewritten as follows:
GROUP BY dil is equivalent to GROUP BY di
,dept , dept
, GROUPING SETS ((dept,sex)) sex
GROUP BY dl is equivalent to GROUP BY dl
,dept , dept
, GROUPING SETS (dept, sex) sex
UNION ALL
GROUP BY di1
, dept
, dept

Figure 457, Repeated field impacts query result

NOTE: Repetitions of the samefield ina GROUP BY (asis done above) are ignored during
query processing. Therefore GROUP BY D1, DEPT, DEPT, SEX isthe same as GROUP BY
D1, DEPT, SEX.

166 Group By and Having

DB2 UDB/V8.1 Cookbook ©

ROLLUP Statement

A ROLLUP expression displays sub-totals for the specified fields. Thisis equivalent to doing
the original GROUP BY/, and also doing more groupings on sets of the left-most columns.

GROUP BY ROLLUP (A,B,C) ===> GROUP BY GROUPING SETS((A,B,C)
. (A,B)
()
)
GROUP BY ROLLUP(C,B) ===> GROUP BY GROUPING SETS ((C,B)
., (C)
)
GROUP BY ROLLUP (A) ===> GROUP BY GROUPING SETS((A)

()
Figure 458, ROLLUP vs. GROUPING SETS

Imagine that we wanted to GROUP BY, but not ROLLUP onefield in alist of fields. To do
this, we simply combine the field to be removed with the next more granular field:

GROUP BY ROLLUP (A, (B,C)) ===> GROUP BY GROUPING SETS((A,B,C)
, (R)
()
Figure 459, ROLLUP vs. GROUPING SETS

Multiple ROLLUP statementsin the same GROUP BY act independently of each other:

GROUP BY ROLLUP (A) ===> GROUP BY GROUPING SETS((A,B,C)
,ROLLUP (B, C) , (A,B)
, (B)
, (B, C)
, (B)

()
Figure 460, ROLLUP vs. GROUPING SETS

SQL Examples
Hereisastandard GROUP BY that gets no sub-totals:

SELECT dept ANSWER
,SUM (salary) AS salary ====================

, SMALLINT (COUNT (*)) AS #rows DEPT SALARY #ROWS FD

, GROUPING (dept) AS fd = mmmm mmmmee —mm e -

FROM employee view A0O0 128500 30
GROUP BY dept BO1 41250 10
ORDER BY dept; co1l 90470 30
D11 222100 9 0

Figure 461, Smple GROUP BY

Imagine that we wanted to also get a grand total for the above. Below is an example of using
the ROLLUP statement to do this:

SELECT dept ANSWER
,SUM (salary) AS salary ====================

, SMALLINT (COUNT (*)) AS #rows DEPT SALARY #ROWS FD

, GROUPING (dept) AS FD mmmm mmmmm e —mm e -

FROM employee view A0O0 128500 3 0
GROUP BY ROLLUP (dept) BO1 41250 1 0
ORDER BY dept; co1l 90470 3.0
D11 222100 9 0

- 482320 16 1

Figure 462, GROUP BY with ROLLUP

NOTE: The GROUPING(field-name) function that is selected in the above example returns a
one when the output row is asummary row, elseit returns a zero.

Order By, Group By, and Having 167

Graeme Birchall ©

Alternatively, we could do things the old-fashioned way and use a UNION ALL to combine
the original GROUP BY with an all-row summary:

SELECT dept ANSWER
,SUM (salary) AS salary ====================
, SMALLINT (COUNT (*)) AS #rows DEPT SALARY #ROWS FD
, GROUPING (dept) AS fd —mmm mmmmmm —mmm— ==
FROM employee view A0O0 128500 3 0
GROUP BY dept BO1 41250 1 0
UNION ALL co1l 90470 3 0
SELECT CAST (NULL AS CHAR(3)) AS dept D11 222100 9 0
,SUM (salary) AS salary - 482320 16 1
, SMALLINT (COUNT (*)) AS #rows
,CAST (1 AS INTEGER) AS fd
FROM employee view

ORDER BY dept;
Figure 463, ROLLUP done the old-fashioned way

Specifying afield both in the original GROUP BY, and inaROLLUP list smply resultsin
every data row being returned twice. In other words, the result is garbage:

SELECT dept ANSWER
,SUM (salary) AS salary ====================
, SMALLINT (COUNT (*)) AS #rows DEPT SALARY #ROWS FD
, GROUPING (dept) AS fd e i
FROM employee view AQ00 128500
GROUP BY dept A0O0 128500
, ROLLUP (dept) BO1 41250
ORDER BY dept; BO1 41250

co1 90470
Cco1 90470
D11 222100
D11 222100

Figure 464, Repeating a field in GROUP BY and ROLLUP (error)

Below is a graphic representation of why the data rows were repeated above. Observe that
two GROUP BY statements were, in effect, generated:

GROUP BY dept => GROUP BY dept => GROUP BY dept
,ROLLUP (dept) ,GROUPING SETS ((dept) UNION ALL
() GROUP BY dept
. 0O

VLOWWWREREFEWW
[cNoNoNoNoNoNoNo]

Figure 465, Repeating a field, explanation
In the next example the GROUP BY,, is on two fields, with the second also being rolled up:

SELECT dept ANSWER
, 8ex ===========================
,SUM (salary) AS salary DEPT SEX SALARY #ROWS FD FS
,SMALLINT (COUNT (*)) AS #rows = ---- -=- —=-=--- —--—-- -- --
, GROUPING (dept) AS fd AQ0 F 52750 1 0 O
, GROUPING (sex) AS fs AOO0 M 75750 2 0 0
FROM employee view AO0O0 - 128500 3 0 1
GROUP BY dept B0l M 41250 1 0 0
, ROLLUP (sex) BO1 - 41250 1 0 1
ORDER BY dept col1 F 90470 3 0 0
,8ex; col - 90470 3 0 1
D11 F 73430 3 0 0
D11 M 148670 6 0 0
D11 - 222100 9 0 1

Figure 466, GROUP BY on 1st field, ROLLUP on 2nd

The next example does a ROLLUP on both the DEPT and SEX fields, which means that we
will get rows for the following:

e Thework-department and sex field combined (i.e. the origina raw GROUP BY).

168 Group By and Having

DB2 UDB/V8.1 Cookbook ©

o A summary for al sexeswithin an individual work-department.

e A summary for al work-departments (i.e. a grand-total).

SELECT

FROM

dept
, 8ex
,SUM (salary) AS
, SMALLINT (COUNT (*)) AS
, GROUPING (dept) AS
, GROUPING (sex) AS

employee view

GROUP BY ROLLUP (dept

, sex)

ORDER BY dept

, Sex;

salary
#rows
fd

fs

Figure 467, ROLLUP on DEPT, then SEX

In the next example we have reversed the ordering of fields in the ROLLUP statement. To
make things easier to read, we have also altered the ORDER BY sequence. Now get an indi-
vidual row for each sex and work-department value, plus a summary row for each sex:, plus a
grand-total row:

SELECT sex
,dept
,SUM (salary) AS
, SMALLINT (COUNT (*)) AS
, GROUPING (dept) AS
, GROUPING (sex) AS
FROM employee view

GROUP BY ROLLUP (sex
,dept)
ORDER BY sex
,dept;

salary
#rows
fd

fs

Figure 468, ROLLUP on SEX, then DEPT
The next statement is the same as the prior, but it uses the logically equivalent GROUPING

SETS syntax:

SELECT sex
,dept
,SUM (salary) AS
, SMALLINT (COUNT (*)) AS
, GROUPING (dept) AS
, GROUPING (sex) AS

FROM employee view

(sex)

GROUP BY GROUPING SETS ((sex,
, ()

ORDER BY sex
,dept;

salary
#rows
fd

fs

dept)

Figure 469, ROLLUP on SEX, then DEPT

The next example has two independent rollups:

e Thefirst generates a summary row for each sex.

ANSWER

DEPT SEX SALARY #ROWS FD FS
AQ0 F 52750 1 0 O
AQ0 75750 2 0 0
AOO0 - 128500 3 0 1
B0l M 41250 1 0 0
BO1 - 41250 1 0 1
colr F 90470 3 0 O
co1r - 90470 3 0 1
D11 F 73430 3 0 O
D11 M 148670 6 0 O
D11 - 222100 9 0 1
- - 482320 le 1 1

ANSWER

SEX DEPT SALARY #ROWS FD FS
F AQ0 52750 1 0 O
F Cco1 90470 3 0 O
F D11 73430 3 0 0
F - 216650 7 1 0
M AQ0 75750 2 0 0
M BO1 41250 1 0 0
M D11 148670 6 0 O
M - 265670 9 1 0
- - 482320 le 1 1

SEX DEPT

I REREmE M

AQ0
Cco1
D11
AQ0
BO1
D11

482320

e The second generates a summary row for each work-department.

Order By, Group By, and Having

=

NAOLVORFRFNIWWER

PRPOOOHOOO

POOOOOOOOo

169

Graeme Birchall ©

The two together make a (single) combined summary row of al matching data. This query is
the same as a UNION of the two individual rollups, but it has the advantage of being done in
asingle pass of the data. The result is the same as a CUBE of the two fields:

SELECT

FROM

sex
,dept
,SUM (salary)

, SMALLINT (COUNT (*)) AS #rows -—-

, GROUPING (dept)

, GROUPING (sex)

employee view

GROUP BY ROLLUP (sex)

, ROLLUP (dept)

ORDER BY sex

,dept;

ANSWER

AS salary SEX DEPT SALARY #ROWS FD FS

AS fd F A0O0 52750 1 0 O

AS fs F Cco1 90470 3 0 O
F D11 73430 3 0 0
F - 216650 7 1 O
M AQO0 75750 2 0 0
M BO1 41250 1 0 0
M D11 148670 6 0 0
M - 265670 9 1 0
- AOO0 128500 3 0 1
- BO1 41250 1 0 1
- Cco1 90470 3 0 1
- D11 222100 9 0 1
- - 482320 le 1 1

Figure 470, Two independent ROLLUPS

Below we use an inner set of parenthesis to tell the ROLLUP to treat the two fields as one,
which causes us to only get the detailed rows, and the grand-total summary:

SELECT dept ANSWER
, 8ex ===========================
,SUM (salary) AS salary DEPT SEX SALARY #ROWS FD FS
, SMALLINT (COUNT (*)) AS #rows Smmm mmm mmmmmm mm--- -- --
, GROUPING (dept) AS fd AQ0 F 52750 1 0 O
, GROUPING (sex) AS fs AOO0 M 75750 2 0 0
FROM employee view B0l M 41250 1 0 O
GROUP BY ROLLUP ((dept, sex)) col1 F 90470 3 0 0
ORDER BY dept D11 F 73430 3 0 0
, sex; D11 M 148670 6 0 0
- - 482320 l6e 1 1

Figure 471, Combined-field ROLLUP

The HAVING statement can be used to refer to the two GROUPING fields. For example, in
the following query, we eliminate all rows except the grand totd :

SELECT

FROM

SUM (salary)

AS salary

, SMALLINT (COUNT (*)) AS #rows

employee view

GROUP BY ROLLUP (sex

HAVING
AND

,dept)

GROUPING (dept)

GROUPING (sex)

ORDER BY salary;
Figure 472, Use HAVING to get only grand-total row

Below isalogically equivalent SQL statement:

SELECT

FROM

SUM (salary)

1
1

AS salary

, SMALLINT (COUNT (*)) AS #rows

employee view

GROUP BY GROUPING SETS(());

Figure 473, Use GROUPING SETSto get grand-total row
Hereis another:

170

482320 16

482320 16

Group By and Having

DB2 UDB/V8.1 Cookbook ©

SELECT SUM (salary) AS salary ANSWER
, SMALLINT (COUNT (*)) AS #rows m===========
FROM employee view SALARY #ROWS
GROUP BY (); e
482320 16

Figure 474, Use GROUP BY to get grand-total row

And another:
SELECT SUM (salary) AS salary ANSWER
,SMALLINT(COUNT(*)) AS #IOWS ============
FROM employee view; SALARY #ROWS

482320 16
Figure 475, Get grand-total row directly

CUBE Statement

A CUBE expression displays a cross-tabulation of the sub-totals for any specified fields. As
such, it generates many more totals than the ssimilar ROLLUP.

GROUP BY CUBE(A,B,C) ===> GROUP BY GROUPING SETS ((A,B,C)
. (A,B)
. (A, Q)
. (B, Q)
()
. (B)
., (C)
()

GROUP BY CUBE(C,B) ===> GROUP BY GROUPING SETS ((C,B)
., (C)
. (B)
()

GROUP BY CUBE (A) ===> GROUP BY GROUPING SETS (

Figure 476, CUBE vs. GROUPING SETS

Aswith the ROLLLUP statement, any set of fieldsin nested parenthesisis treated by the
CUBE asasinglefield:

GROUP BY CUBE (A, (B,C)) ===> GROUP BY GROUPING SETS((A,B,C)
. (B, Q)
()
)

(a
()

)
)

Figure 477, CUBE vs. GROUPING SETS
Having multiple CUBE statementsis alowed, but very, very silly:

GROUP BY CUBE (A,B) ==> GROUPING SETS((A,B,C), (A,B), (A,B,C), (A,B)
,CUBE (B, C) . (A,B,C), (A,B), (A,C), (A)
. (B,C), (B), (B,C), (B)
. (B,C), (B), (C), ()

Figure 478, CUBE vs. GROUPING SETS

Obviously, the above isalot of GROUPING SETS, and even more underlying GROUP BY
statements. Think of the query as the Cartesian Product of the two CUBE statements, which
are first resolved down into the following two GROUPING SETS:

((A,B),(A).(B).())
((8,©).(B).(C).0))

Order By, Group By, and Having 171

SQL Examples
Below is a standard CUBE statement:

SELECT dl

,dept

,sex

, INT (SUM (salary)) AS sal
, SMALLINT (COUNT (*)) AS #r
, GROUPING (d1) AS f1
, GROUPING (dept) AS fd
, GROUPING (sex) AS fs

FROM employee view
GROUP BY CUBE (dl, dept, sex)
ORDER BY dl

,dept

, Sex;

Figure 479, CUBE example

T gygguouguunonnamomw >y
1

- B0l
- Co1
- Co1
- D11
- D11
- D11

]
=
B
TR 2o g R 2 R 2o 2200 2 2

Here is the same query expressed as GROUPING SETS;

SELECT di

,dept
,sex
, INT (SUM (salary)) AS sal
, SMALLINT (COUNT (*)) AS #r
, GROUPING (d1) AS f1
, GROUPING (dept) AS fd
, GROUPING (sex) AS fs
FROM employee view
GROUP BY GROUPING SETS ((dl, dept,
, (d1,dept)
, (d1, sex)
, (dept, sex)
, (d1)
, (dept)
, (sex)
. (

ORDER BY dl
,dept
,sex;

ANSWER

D1 DEPT

A AOO0 F

A AO00 M

etc...
sex)

Figure 480, CUBE expressed using multiple GROUPING SETS

172

SEX

Graeme Birchall ©

SAL #R F1 FD FS
52750 1 0 0 O
75750 2 0 0 O

128500 3 0 0 1
52750 1 0 1 O
75750 2 0 1 O

128500 3 0 1 1
41250 1 0 0 O
41250 1 0 O 1
41250 1 0 1 O
41250 1 0 1 1
90470 3 0 0 O
90470 3 0 0 1
90470 3 0 1 O
90470 3 0 1 1
73430 3 0 0 O

148670 6 0 0 O

222100 9 0 0 1
73430 3 0 1 O

148670 6 0 1 O

222100 9 0 1 1
52750 1 1 0 O
75750 2 1 0 O

128500 3 1 0 1
41250 1 1 0 O
41250 1 1 0 1
90470 3 1 0 O
90470 3 1 0 1
73430 3 1 0 O

148670 6 1 0 O

222100 9 1 0 1

216650 7 1 1 O

265670 9 1 1 O

482320 16 1 1 1

SAL #R F1 FD FS

52750 1 0 0 O
75750 2 0 0 O

(same as prior query)

Group By and Having

DB2 UDB/V8.1 Cookbook ©

Here is the same CUBE statement expressed as a ROLLUP, plus the required additional
GROUPING SETS:

SELECT dl ANSWER
,dept ==============================
, sex D1 DEPT SEX SAL #R F1 FD FS
, INT (SUM (salary)) AS sal B e
, SMALLINT (COUNT (*)) AS #r A AOO0 F 52750 1 0 0 O
, GROUPING (d1) AS f1 A AO00 M 75750 2 0 0 O
, GROUPING (dept) AS fd etc... (same as prior query)
, GROUPING (sex) AS fs
FROM employee view
GROUP BY GROUPING SETS (ROLLUP(dl, dept, sex)
, (dept, sex)
, (sex, dept)
, (d1, sex))
ORDER BY dl
,dept
, Sex;

Figure 481, CUBE expressed using ROLLUP and GROUPING SETS

A CUBE on alist of columns in nested parenthesis acts as if the set of columns was only one
field. The result is that one gets a standard GROUP BY (on the listed columns), plus arow
with the grand-totals:

SELECT dl ANSWER
,dept ==============================
, Sex D1 DEPT SEX SAL #R F1 FD FS
, INT (SUM (salary)) AS sal = @ mmmmmmmm e oo
, SMALLINT (COUNT (*)) AS #r A AQ00 F 52750 1 0 O O
, GROUPING (d1) AS f1 A A00 M 75750 2 0 0 O
, GROUPING (dept) AS fd B B0l M 41250 1 0 0 O
, GROUPING (sex) AS fs c Co1 F 90470 3 0 0 O
FROM employee VIEW D D11 F 73430 3 0 0 O
GROUP BY CUBE((dl, dept, sex)) D D11 M 148670 6 0 0 O
ORDER BY dl - - - 482320 16 1 1 1
,dept
, Sex;

Figure 482, CUBE on compound fields

The above query is resolved thus:

GROUP BY CUBE((A,B,C) => GROUP BY GROUING SETS ((A,B,C) => GROUP BY A
, () ,B

,C

UNION ALL

GROUP BY ()

Figure 483, CUBE on compound field, explanation

Complex Grouping Sets - Done Easy

Many of the more complicated SQL statementsillustrated above are essentially unreadable
becauseit is very hard to tell what combinations of fields are being rolled up, and what are

not. There ought to be a more user-friendly way and, fortunately, there is. The CUBE com-

mand can be used to roll up everything. Then one can use ordinary SQL predicates to select
only those totals and sub-totals that one wants to display.

NOTE: Queries with multiple complicated ROLLUP and/or GROUPING SET statements
sometimes fail to compile. In which case, this method can be used to get the answer.

To illustrate this technique, consider the following query. It summarizes the datain the sam-
pleview by threefields:

Order By, Group By, and Having 173

SELECT dl AS
,dept AS
,sex AS
, INT (SUM (salary)) AS
, SMALLINT (COUNT (*)) AS

FROM employee VIEW

GROUP BY dl
,dept
, sex

ORDER BY 1,2,3;

Figure 484, Basic GROUP BY example

Now imagine that we want to extend the above query to get the following sub-total rows:

DESIRED SUB-TOTALS

D1, DEPT, and SEX.
D1 and DEPT.

D1 and SEX.

D1.

SEX.

Grand total.

Graeme Birchall ©

dl ANSWER

dpt —=================

sSX D1 DPT SX SAL R

sal e -

r A AQ00 F 52750 1
A AQ0O0O M 75750 2
B BO1 M 41250 1
C CO01 F 90470 3
D D11 F 73430 3
D D11 M 148670 6

EQUIVILENT TO

GROUP BY GROUPING SETS ((dl,dept, sex)
, (d1,dept)
, (d1, sex)
, (d1)
, (sex)
EQUIVILENT TO , ()

GROUP BY ROLLUP (d1,dept)
, ROLLUP (sex)

Figure 485, Sub-totals that we want to get

Rather than use either of the syntaxes shown on the right above, below we use the CUBE ex-
pression to get al sub-totals, and then select those that we want:

SELECT *
FROM (SELECT di AS di
, dept AS dpt
, sex AS sxX
, INT (SUM (salary)) AS sal
, SMALLINT (COUNT (*)) AS #r
, SMALLINT (GROUPING (dl)) AS gl
, SMALLINT (GROUPING (dept)) AS gd
, SMALLINT (GROUPING (sex)) AS gs
FROM EMPLOYEE VIEW ANSWER
GROUP BY CUBE (d1,dept, sex) ============================
)AS xxXX D1 DPT SX SAL #R G1 GD GS
WHERE (gl,gd,gs) = (0,0,0) e -- - -= -
OR (gl,gd,gs) = (0,0,1) A AO00 F 52750 1 0 0 O
OR (gl,gd,gs) = (0,1,0) A AOOM 75750 2 0 0 O
OR (gl,gd,gs) = (0,1,1) A A00 - 128500 3 0 0 1
OR (gl,gd,gs) = (1,1,0) A - F 52750 1 0 1 O
OR (gl,gd,gs) = (1,1,1) A - M 75750 2 0 1 O
ORDER BY 1,2,3; A - - 128500 3 O 1 1
B BO01 M 41250 1 0 0 O
B BO1 - 41250 1 0 0 1
B - M 41250 1 0 1 O
B - - 41250 1 0 1 1
C CO1 F 90470 3 0 0 O
Cc Co1 - 90470 3 0 0 1
c - F 90470 3 0 1 0
c - - 90470 3 0 1 1
D D11 F 73430 3 0 0 O
D D11 M 148670 6 0O 0 O
D D11 - 222100 9 0 0 1
D - F 73430 3 0 1 O
D - M 148670 6 0 1 0
D - - 222100 9 0 1 1
- - F 216650 7 1 1 0
- - M 265670 9 1 1 O
- - - 482320 16 1 1 1

Figure 486, Get lots of sub-totals, using CUBE

174

Group By and Having

DB2 UDB/V8.1 Cookbook ©

In the above query, the GROUPING function (see page 71) is used to identify what fields are
being summarized on each row. A value of one indicates that the field is being summarized;
while avalue of zero meansthat it is not. Only the following combinations are kept:

AABAA
fary
@
g
9]
n
| | R N | [

(0,0,0)
(0,0,1)
(0,1,0)
(0,1,1)
(1,1,0)
) = (1,1,1)

NN NNA
L | | |
L | | |

D1,
D1,
D1,
D1,

SEX,

DEPT, SEX
DEPT
SEX

grand total
Figure 487, Predicates used - explanation

Here is the same query written using two ROLLUP expressions. Y ou can be the judge as to

which isthe easier to understand:

SELECT

FROM

di

,dept

,sex

, INT (SUM (salary))

, SMALLINT (COUNT (*))

employee view

GROUP BY ROLLUP (d1l,dept)
,ROLLUP (sex)

ORDER BY 1,2,3;

AS sal
AS #r

Figure 488, Get |ots of sub-totals, using ROLLUP

Group By and Order By

I ggguououounoNomwo

TR 2R 2o g 220 R 2

One should never assume that the result of a GROUP BY will be a set of appropriately or-
dered rows because DB2 may choose to use a "strange” index for the grouping so asto avoid
doing arow sort. For example, if one says "GROUP BY C1, C2" and the only suitable index
ison C2 descending and then C1, the data will probably come back in index-key order.

SELECT

FROM

dept, job

, COUNT (*)

staff

GROUP BY dept, job
ORDER BY dept, job;

Figure 489, GROUP BY with ORDER BY

NOTE: Always code an ORDER BY if there is a need for the rows returned from the query to
be specifically ordered - which there usualy is.

Order By, Group By, and Having

175

Group By in Join

Graeme Birchall ©

We want to select those rowsin the STAFF table where the average SALARY for the em-
ployee's DEPT is greater than $18,000. Answering this question requires using a JOIN and
GROUP BY in the same statement. The GROUP BY will have to be done first, then its’ result

will be joined to the STAFF table.

There are two syntactically different, but technically similar, waysto write this query. Both
techniques use a temporary table, but the way by which thisis expressed differs. In the first

example, we shall use a common table expression:

WITH staff2 (dept, avgsal) AS ANSWER
(SELECT dept S ——
,AVG (salary) ID NAME DEPT
FROM staff mee e mm e - - -

160 Molinare 10

GROUP BY dept

HAVING AVG (salary) > 18000 210 Lu 10
) 240 Daniels 10
SELECT a.id 260 Jones 10
,a.name
,a.dept
FROM staff a
,staff2 b
WHERE a.dept = b.dept

ORDER BY a.id;

Figure 490, GROUP BY on one side of join - using common table expression

In the next example, we shall use a full-select:

SELECT a.id
,a.name
,a.dept
FROM staff a
, (SELECT dept AS dept
,AVG (salary) AS avgsal
FROM staff
GROUP BY dept
HAVING AVG (salary) > 18000
)AS b
WHERE a.dept = b.dept

ORDER BY a.id;
Figure 491, GROUP BY on one side of join - using full-select

COUNT and No Rows

ANSWER

ID NAME DEPT
160 Molinare 10
210 Lu 10
240 Daniels 10
260 Jones 10

When there are no matching rows, the value returned by the COUNT depends upon whether

thisisa GROUP BY in the SQL statement or not:

SELECT COUNT (*) AS cl
FROM staff

WHERE id < 1;

SELECT COUNT (*) AS cl
FROM staff

WHERE id < 1

GROUP BY id;
Figure 492, COUNT and No Rows

See page 320 for a comprehensive discussion of what happens when no rows match.

176

Group By and Having

DB2 UDB/V8.1 Cookbook ©

Joins

A joinis used to relate sets of rowsin two or more logical tables. The tables are always joined
on arow-by-row basis using whatever join criteriaare provided in the query. The result of a
join is always a new, albeit possibly empty, set of rows.

In ajoin, the matching rows are joined side-by-side to make the result table. By contrast, ina
union (see page 213) the matching rows are joined (in a sense) one-above-the-other to make
the result table.

Why Joins Matter

The most important datain arelational database is not that stored in the individua rows.
Rather, it is the implied relationships between sets of related rows. For example, individual
rowsin an EMPLOY EE table may contain the employee ID and salary - both of which are
very important dataitems. However, it isthe set of al rowsin the same table that gives the
gross wages for the whole company, and it is the (implied) relationship between the EM-
PLOY EE and DEPARTMENT tables that enables one to get a breakdown of employees by
department and/or division.

Joins are important because one uses them to tease the relationships out of the database. They
are also important because they are very easy to get wrong.

Sample Views

CREATE VIEW STAFF V1 AS STAFF_V1 STAFF_V2
SELECT ID, NAME - - + +--m - +
FROM STAFF ID|NAME ID|JOB
WHERE ID BETWEEN 10 AND 30; | ==|=-======-=| | -=|-=-=-=---
10|Sanders 20|Sales
CREATE VIEW STAFF_V2 AS 20 |Pernal 30|Clerk
SELECT ID, JOB 30|Marenghi 30 |Mgr
FROM STAFF R + 40 |Sales
WHERE ID BETWEEN 20 AND 50 50 |Mgr
UNION ALL +--m - +

SELECT ID, ’‘Clerk’ AS JOB
FROM STAFF
WHERE ID = 30;

Figure 493, Sample Views used in Join Examples
Observe that the above two views have the following characteristics:
e Both views contain rows that have no corresponding ID in the other view.

e IntheV2view, there aretwo rowsfor ID of 30.

Join Syntax

DB2 UDB SQL comes with two quite different ways to represent ajoin. Both syntax styles
will be shown throughout this section though, in truth, one of the stylesis usually the better,
depending upon the situation.

Thefirst style, which isonly realy suitable for inner joins, involves listing the tables to be
joined in a FROM statement. A comma separates each table name. A subsequent WHERE
statement constrains the join.

Joins 177

Graeme Birchall ©

SELECT ... FROM ;able name
L correlation name J

} L WHERE join and other predicates J }

Figure 494, Join Syntax #1

Here are some sample joins:

SELECT V1.ID JOIN ANSWER
,V1.NAME —===========—-====
,V2.J0B ID NAME JOB

FROM STAFF Vi vl m- m--o---- —-——
,STAFF V2 V2 20 Pernal Sales

WHERE V1.ID = V2.ID 30 Marenghi Clerk

ORDER BY V1.ID 30 Marenghi Mgr
,V2.J0B;

Figure 495, Sample two-table join

SELECT V1.ID JOIN ANSWER
,V2.JOB s================
, V3 .NAME ID JOB NAME

FROM STAFF_ v1i vl == mmm-- —--————
,STAFF V2 V2 30 Clerk Marenghi
,STAFF_V1 V3 30 Mgr Marenghi

WHERE V1.ID = V2.ID

AND V2.ID = V3.ID
AND V3.NAME LIKE 'M%’

ORDER BY V1.NAME

,V2.J0B;

Figure 496, Sample three-table join

The second join style, which is suitable for both inner and outer joins, involves joining the
tables two at atime, listing the type of join as one goes. ON conditions constrain thejoin
(note: there must be at least one), while WHERE conditions are applied after the join and
constrain the result.

INNER

F SELECT ... FROM — table name L J T | }
Cc. name LEFT
RIGHT L OUTER J
FULL

F JOIN — table name — ON — join predicates
L WHERE join & other predicatesJ
Figure 497, Join Syntax #2

The following sample joins are logically equivalent to the two given above:

SELECT V1.ID JOIN ANSWER
,V1.NAME =================
,V2.J0B ID NAME JOB
FROM STAFF_ Vvi vl m- m------- —o——
INNER JOIN 20 Pernal Sales
STAFF V2 V2 30 Marenghi Clerk
ON V1.ID = V2.ID 30 Marenghi Mgr
ORDER BY V1.ID
,V2.J0B;

Figure 498, Sample two-table inner join

178 Join Syntax

DB2 UDB/V8.1 Cookbook ©

SELECT V1.ID STAFF_V1 STAFF_V2
,V2.J0B F-—-mmmmm - - - + +-------=- +
, V3 .NAME ID |NAME ID|JOB
FROM STAFF v1 vi e mmmmmeem e
JOIN 10 |Sanders 20|Sales
STAFF V2 V2 20| Pernal 30| Clerk
ON V1.ID = v2.1ID 30 |Marenghi 30 |Mgr
JOIN +--mmmmmmm - + 40| Sales
STAFF_V1 V3 50 |Mgr
ON V2.ID = V3.ID JOIN ANSWER +--------- +
WHERE V3.NAME LIKE 'M$%’ =================
ORDER BY V1.NAME ID JOB NAME
,V2.J0B; mm mmmmm mme oo

30 Clerk Marenghi
30 Mgr Marenghi

Figure 499, Sample three-table inner join
ON vs. WHERE

A join written using the second syntax style shown above can have either, or both, ON and
WHERE checks. These two types of check work quite differently:

e WHERE checks are used to filter rows, and to define the nature of the join. Only those
rows that match all WHERE checks are returned.

e ON checks define the nature of the join. They are used to categorize rows as either joined
or not-joined, rather than to exclude rows from the answer-set, though they may do thisin
some situations.

Let illustrate this difference with asimple, if dlightly silly, left outer join:

SELECT * ANSWER

FROM STAFF_V1 V1 ====================

LEFT OUTER JOIN ID NAME ID JOB
STAFF V2 V2 oo oomeoooo oo oo

ON 1 =1 10 Sanders - -

AND V1.ID = V2.ID 20 Pernal 20 Sales

ORDER BY V1.ID 30 Marenghi 30 Clerk
,V2.J0B; 30 Marenghi 30 Mgr

Figure 500, Sample Views used in Join Examples
Now lets replace the second ON check with a WHERE check:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
LEFT OUTER JOIN ID NAME ID JOB
STAFF V2 v2 -- m------- —- ————
ON 1 =1 20 Pernal 20 Sales
WHERE V1.ID = V2.ID 30 Marenghi 30 Clerk
ORDER BY V1.ID 30 Marenghi 30 Mgr
, V2 .JOB;

Figure 501, Sample Views used in Join Examples

In the first example above, all rows were retrieved from the V1 view. Then, for each row, the
two ON checks were used to find matching rowsin the V2 view. In the second query, all rows
were again retrieved from the V1 view. Then each V1 row was joined to every row in the V2
view using the (silly) ON check. Finaly, the WHERE check was applied to filter out al pairs
that do not match on ID.

Can an ON check ever exclude rows? The answer is complicated:

e Inaninnerjoin, an ON check can exclude rows because it is used to define the nature of
the join and, by definition, in an inner join only matching rows are returned.

Joins 179

Graeme Birchall ©

e Inapartia outer join, an ON check on the originating table does not exclude rows. It
simply categorizes each row as participating in the join or not.

e Inapartia outer join, an ON check on the table to be joined to can exclude rows because
if the row fails the test, it does not match the join.

e Inafull outer join, an ON check never excludes rows. It simply categorizes them as
matching the join or not.

Each of the above principles will be demonstrated as we look at the different types of join.

Join Types

A generic join matches one row with another to create a new compound row. Joins can be
categorized by the nature of the match between the joined rows. In this section we shall dis-
cuss each join type and how to codeit in SQL.

Inner Join

An inner-join is another name for a standard join in which two sets of columns are joined by
matching those rows that have equal data values. Most of the joins that one writes will proba
bly be of this kind and, assuming that suitable indexes have been created, they will almost
always be very efficient.

STAFF_V1 STAFF_V2 INNER-JOIN ANSWER
e el + +---m - + ====================
ID|NAME ID|JOB Join on ID ID NAME ID JOB
T U mmm—m—————=> el el oo
10| Sanders 20 |Sales 20 Pernal 20 Sales
20 |Pernal 30|Clerk 30 Marenghi 30 Clerk
30 |Marenghi 30 |Mgr 30 Marenghi 30 Mgr
o mm - — - + 40| Sales

50 |Mgr

SELECT * ANSWER

FROM STAFF V1 V1 ====================
,STAFF_V2 V2 ID NAME ID JOB

WHERE V1i.ID = V2.ID e e oo o

ORDER BY V1.ID 20 Pernal 20 Sales
,V2.J0B; 30 Marenghi 30 Clerk

30 Marenghi 30 Mgr
Figure 503, Inner Join L (1 of 2)

SELECT * ANSWER

FROM STAFF_V1 V1 ====================

INNER JOIN ID NAME ID JOB
STAFF V2 V2 e meemeee o oo

ON V1.ID = V2.1ID 20 Pernal 20 Sales

ORDER BY V1.ID 30 Marenghi 30 Clerk
,V2.J0B; 30 Marenghi 30 Mgr

Figure 504, Inner Join L (2 of 2)
ON and WHERE Usage

In an inner join only, an ON and a WHERE check work much the same way. Both define the
nature of the join, and because in an inner join, only matching rows are returned, both act to
exclude al rows that do not match the join.

180 Join Types

DB2 UDB/V8.1 Cookbook ©

Below isan inner join that uses an ON check to exclude managers:

SELECT *
FROM STAFF_V1 V1
INNER JOIN

STAFF_V2 V2
ON V1.ID = V2.ID
AND V2.JOB <> 'Mgr’
ORDER BY V1.ID

,V2.JOB;

Figure 505, Inner join, using ON check

Here is the same query written using a WHERE check

SELECT *
FROM STAFF_V1 V1
INNER JOIN

STAFF_V2 V2

ON V1.ID = V2.ID
WHERE V2.J0B <> ’'Mgr’
ORDER BY V1.ID

,V2.J0B;

Figure 506, Inner join, using WHERE check

Left Outer Join

20
30

20
30

SWER

NAME ID JOB
Pernal 20 Sales
Marenghi 30 Clerk

SWER
NAME ID JOB
Pernal 20 Sales

Marenghi 30 Clerk

A left outer join isthe same as saying that | want al of the rows in the first table listed, plus

any matching rows in the second table:

STAFF_V1 STAFF_V2
R + B +

ID | NAME ID|JOB

e _—— | ——_——-—— =========>
10|Sanders 20|Sales

20| Pernal 30|Clerk

30 |Marenghi 30 |Mgr
R T T + 40|Sales

50 |Mgr

SELECT *

FROM STAFF_V1 V1

LEFT OUTER JOIN
STAFF_V2 V2

ON V1.ID = V2.ID

ORDER BY 1,4;

Figure 508, Left Outer Join SQL (1 of 2)

LEFT-OUTER-JOIN ANSWER

NAME ID JOB
Sanders - -
Pernal 20 Sales
Marenghi 30 Clerk

Marenghi 30 Mgr

It is possible to code aleft outer join using the standard inner join syntax (with commas be-

tween tables), but it isalot of work:

SELECT V1.*
, V2. %
FROM STAFF_V1 V1
,STAFF_V2 V2
WHERE V1.ID = V2.ID
UNION
SELECT V1.*
, CAST (NULL AS SMALLINT) AS ID
,CAST (NULL AS CHAR(5)) AS JOB
FROM STAFF_V1 V1
WHERE V1.ID NOT IN

(SELECT ID FROM STAFF_V2)
ORDER BY 1,4;

Figure 509, Left Outer Join QL (2 of 2)

Joins

This join gets all
rows in STAFF V1
that match rows

in STAFF V2.

This query gets

all the rows in

STAFF_V1 with no
matching rows

in STAFF V2.

181

Graeme Birchall ©

ON and WHERE Usage

In any type of join, a WHERE check works asif the join isan inner join. If no row matches,
then no row is returned, regardless of what table the predicate refersto. By contrast, in aleft
or right outer join, an ON check works differently, depending on what table field it refers to:

o [Ifitreferstoafield inthetable being joined to, it determines whether the related row
matches the join or not.

o Ifitreferstoafieldinthetable being joined from, it determines whether the related row
finds amatch or not. Regardless, the row will be returned.

In the next example, those rows in the table being joined to (i.e. the V2 view) that match on
ID, and that are not for amanager are joined to:

SELECT * ANSWER

FROM STAFF_V1 V1 ====================

LEFT OUTER JOIN ID NAME ID JOB
STAFF V2 vVv2 m= m------- —- ————-

ON V1.ID = V2.ID 10 Sanders - -

AND V2.J0B <> ’'Mgr’ 20 Pernal 20 Sales

ORDER BY V1.ID 30 Marenghi 30 Clerk
,V2.J0B;

Figure 510, ON check on table being joined to

If we rewrite the above query using a WHERE check we will lose arow (of output) because
the check is applied after the join is done, and a null JOB does not match:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
LEFT OUTER JOIN ID NAME ID JOB
STAFF V2 V2 e meemeee o oo
ON V1.ID = V2.ID 20 Pernal 20 Sales
WHERE V2.J0B <> ’'Mgr’ 30 Marenghi 30 Clerk
ORDER BY V1.ID
,V2.J0B;

Figure 511, WHERE check on table being joined to (1 of 2)
We could make the WHERE equivalent to the ON, if we also checked for nulls:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
LEFT OUTER JOIN ID NAME ID JOB
STAFF V2 V2 oo ammeoooo oo oo
ON V1.ID = V2.ID 10 Sanders - -
WHERE (V2.J0B <> ’'Mgr’ 20 Pernal 20 Sales
OR V2.JOB IS NULL) 30 Marenghi 30 Clerk
ORDER BY V1.ID
,V2.J0B;

Figure 512, WHERE check on table being joined to (2 of 2)

In the next example, those rows in the table being joined from (i.e. the V1 view) that match
on ID and have aNAME >N’ participate in the join. Note however that V1 rows that do not
participatein thejoin (i.e. ID = 30) are still returned:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
LEFT OUTER JOIN ID NAME ID JOB
STAFF V2 vVv2 m= m------- —- ————-
ON V1.ID = V2.ID 10 Sanders - -
AND V1.NAME > ’'N’ 20 Pernal 20 Sales
ORDER BY V1.ID 30 Marenghi - -
, V2 .JOB;

Figure 513, ON check on table being joined from

182 Join Types

DB2 UDB/V8.1 Cookbook ©

If we rewrite the above query using aWHERE check (on NAME) we will lose arow because
now the check excludes rows from the answer-set, rather than from participating in the join:

SELECT * ANSWER
FROM STAFF_V1 V1 ============-==o=mao
LEFT OUTER JOIN ID NAME ID JOB
STAFF_V2 V2 e emmmeme- - e
ON V1.ID = V2.ID 10 Sanders - -
WHERE V1.NAME > ‘N’ 20 Pernal 20 Sales
ORDER BY V1.ID
,V2.JOB;

Figure 514, WHERE check on table being joined from

Unlike in the previous example, there is no way to alter the above WHERE check to make it
logically equivalent to the prior ON check. The ON and the WHERE are applied at different
times and for different purposes, and thus do completely different things.

Right Outer Join

A right outer join isthe inverse of aleft outer join. One gets every row in the second table
listed, plus any matching rows in the first table:

STAFF_V1 STAFF_V2 RIGHT-OUTER-JOIN ANSWER
B + +---- - + =======================
ID |NAME ID|JOB ID NAME ID JOB
T U mmmm—————s T, .
10|Sanders 20 |Sales 20 Pernal 20 Sales
20| Pernal 30| Clerk 30 Marenghi 30 Clerk
30 |Marenghi 30 |Mgr 30 Marenghi 30 Mgr
+ommmm - + 40|Sales - - 40 Sales

50 |Mgr - - 50 Mgr

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
RIGHT OUTER JOIN ID NAME ID JOB

STAFF_V2 V2 T - —----
ON V1.ID = V2.ID 20 Pernal 20 Sales
ORDER BY V2.ID 30 Marenghi 30 Clerk
,V2.J0B; 30 Marenghi 30 Mgr
- - 40 Sales
- - 50 Mgr
Figure 516, Right Outer Join SQL (1 of 2)
It isaso possible to code aright outer join using the standard inner join syntax:
SELECT V1.* ANSWER
V2. % Sooooooooooooooooooo
FROM STAFF_V1 V1 ID NAME ID JOB
,STAFF V2 V2 - _—— -
WHERE V1.ID = V2.ID 20 Pernal 20 Sales
UNION 30 Marenghi 30 Clerk
SELECT CAST (NULL AS SMALLINT) AS ID 30 Marenghi 30 Mgr
,CAST (NULL AS VARCHAR(9)) AS NAME - - 40 Sales
,V2.*% - - 50 Mgr
FROM STAFF_V2 V2
WHERE V2.ID NOT IN

(SELECT ID FROM STAFF V1)
ORDER BY 3,4;

Figure 517, Right Outer Join SQL (2 of 2)

Joins 183

ON and WHERE Usage

Graeme Birchall ©

The rulesfor ON and WHERE usage are the same in aright outer join asthey are for aleft

outer join (see page 182), except that the relevant tables are reversed.

Full Outer Joins

A full outer join occurs when all of the matching rows in two tables are joined, and there is

also returned one copy of each non-matching row in both tables.

STAFF_V1 STAFF_V2
R + B
ID | NAME ID|JOB
10|Sanders 20|Sales
20| Pernal 30|Clerk
30 |Marenghi 30 |Mgr
to-mmm - - + 40 |Sales
50 |Mgr

SELECT
FROM

*

STAFF_V1 V1

FULL OUTER JOIN

ON

STAFF_V2 V2

V1.ID = V2.ID

ORDER BY V1.ID

Figure 519, Full Outer Join SQL

Here is the same done using the standard inner join syntax:

SELECT
FROM
WHERE

UNION
SELECT

FROM
WHERE
UNION

SELECT

FROM
WHERE

,V2.ID
,V2.JOB;

V1.*
V2. %
STAFF_V1 V1
, STAFF_V2 V2

V1.ID = V2.ID

V1i.*

,CAST (NULL AS SMALLINT)
,CAST (NULL AS CHAR(5))

STAFF_V1 V1
V1.ID NOT IN

(SELECT ID FROM STAFF _V2)

CAST (NULL AS SMALLINT)
, CAST (NULL AS VARCHAR(9))

V2.
STAFF_V2 V2
V2.ID NOT IN

(SELECT ID FROM STAFF_V1)

ORDER BY 1,3,4;

Figure 520, Full Outer Join SQL

FULL-OUTER-JOIN ANSWER

Sanders - -
Pernal 20 Sales
Marenghi 30 Clerk
Marenghi 30 Mgr

Sanders - -
Pernal 20 Sales
Marenghi 30 Clerk
Marenghi 30 Mgr

Marenghi 30 Clerk
Marenghi 30 Mgr

The above is reasonably hard to understand when two tables are involved, and it goes down

hill fast as more tables are joined. Avoid.

ON and WHERE Usage

In afull outer join, an ON check is quite unlike a WHERE check in that it never resultsin a
row being excluded from the answer set. All it does is categorize the input row as being either

184

Join Types

DB2 UDB/V8.1 Cookbook ©

matching or non-matching. For example, in the following full outer join, the ON check joins
those rows with equal key values:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL OUTER JOIN ID NAME ID JOB
STAFF V2 V2 oo oomeoooo oo oo
ON V1.ID = V2.ID 10 Sanders - -
ORDER BY V1.ID 20 Pernal 20 Sales
,V2.1ID 30 Marenghi 30 Clerk
,V2.J0B; 30 Marenghi 30 Mgr
- - 40 Sales
- - 50 Mgr

Figure 521, Full Outer Join, match on keys

In the next example, we have deemed that only those IDs that match, and that also have a
value greater than 20, are atrue match:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL OUTER JOIN ID NAME ID JOB
STAFF V2 V2 oo ommeoooo oo oo
ON V1.ID = V2.ID 10 Sanders - -
AND V1.ID > 20 20 Pernal - -
ORDER BY V1.ID 30 Marenghi 30 Clerk
,V2.1ID 30 Marenghi 30 Mgr
,V2.J0B; - - 20 Sales
- - 40 Sales
- - 50 Mgr

Figure 522, Full Outer Join, match on keys > 20

Observe how in the above statement we added a predicate, and we got morerows! Thisis
because in an outer join an ON predicate never removes rows. It simply categorizes them as
being either matching or non-matching. If they match, it joins them. If they dont, it passes
them through.

In the next example, nothing matches. Consequently, every row isreturned individually. This
query islogically similar to doing aUNION ALL on the two views:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL OUTER JOIN ID NAME ID JOB
STAFF V2 v2 -- m------- —- ————
ON V1.ID = V2.ID 10 Sanders - -
AND +1 = -1 20 Pernal - -
ORDER BY V1.ID 30 Marenghi - -
,V2.1ID - - 20 Sales
,V2.J0B; - - 30 Clerk
- - 30 Mgr
- - 40 Sales
- - 50 Mgr

Figure 523, Full Outer Join, match on keys (no rows match)

ON checks are somewhat like WHERE checks in that they have two purposes. Within atable,
they are used to categorize rows as being either matching or non-matching. Between tables,
they are used to define the fields that are to be joined on.

In the prior example, the first ON check defined the fields to join on, while the second join
identified those fields that matched the join. Because nothing matched (due to the second
predicate), everything fell into the "outer join" category. This means that we can remove the
first ON check without altering the answer set:

Joins 185

Graeme Birchall ©

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL OUTER JOIN ID NAME ID JOB
STAFF_V2 V2 —— e —m——— - —— -
ON +1 = -1 10 Sanders - -
ORDER BY V1.ID 20 Pernal - -
,V2.1ID 30 Marenghi - -
, V2 .JOB; - - 20 Sales
- - 30 Clerk
- - 30 Mgr
- - 40 Sales
- - 50 Mgr

Figure 524, Full Outer Join, don't match on keys (no rows match)

What happensiif everything matches and we don't identify the join fields? The result in a Car-
tesian Product:

SELECT * ANSWER

FROM STAFF_V1 V1 ====================

FULL OUTER JOIN ID NAME ID JOB
STAFF_V2 V2 - mmm———-- —— m==--

ON +1 <> -1 10 Sanders 20 Sales

ORDER BY V1.ID 10 Sanders 30 Clerk
,V2.1ID 10 Sanders 30 Mgr
,V2.J0B; 10 Sanders 40 Sales

10 Sanders 50 Mgr
20 Pernal 20 Sales

STAFF_V1 STAFF_V2 20 Pernal 30 Clerk
T T + Fmmmmm - + 20 Pernal 30 Mgr
ID |NAME ID|JOB 20 Pernal 40 Sales
- = = =m---- 20 Pernal 50 Mgr
10 |Sanders 20| Sales 30 Marenghi 20 Sales
20 |Pernal 30|Clerk 30 Marenghi 30 Clerk
30 |Marenghi 30 |Mgr 30 Marenghi 30 Mgr
B + 40| Sales 30 Marenghi 40 Sales
50 |Mgr 30 Marenghi 50 Mgr
e +

Figure 525, Full Outer Join, don’'t match on keys (all rows match)

In an outer join, WHERE predicates behave as if they were written for an inner join. In par-
ticular, they always do the following:

o WHERE predicates defining join fields enforce an inner join on those fields.

o WHERE predicates on non-join fields are applied after the join, which means that when
they are used on not-null fields, they negate the outer join.

Here is an example of a WHERE join predicate turning an outer join into an inner join:

SELECT * ANSWER

FROM STAFF_V1 V1 ====================

FULL JOIN ID NAME ID JOB
STAFF V2 V2 e - -

ON V1.ID = V2.1ID 20 Pernal 20 Sales

WHERE V1.ID = V2.ID 30 Marenghi 30 Clerk

ORDER BY 1,3,4; 30 Marenghi 30 Mgr

Figure 526, Full Outer Join, turned into an inner join by WHERE

To illustrate some of the complications that WHERE checks can cause, imagine that we want
todoaFULL OUTER JOIN on our two test views (see below), limiting the answer to those
rowswherethe"V1 D" field isless than 30. There are severa ways to express this query,
each giving adifferent answer:

186 Join Types

DB2 UDB/V8.1 Cookbook ©

STAFF_V1 STAFF_V2
+----mmm - + +--------- + ANSWER
ID|NAME ID|JOB OUTER-JOIN CRITERIA ============
e B |- LT EEEEEEEEE ???, DEPENDS
10| Sanders 20 |sales V1.ID = v2.1ID
20 |Pernal 30(|Clerk V1.ID < 30
30 |Marenghi 30 |Mgr
o mm - — - + 40| Sales
50 |Mgr
+-mmmm - +

Figure 527, Outer join V1.ID < 30, sample data

In our first example, the "V 1.ID < 30" predicate is applied after the join, which effectively
eliminatesall "V2" rows that don't match (because their "V 1.1D" value is null):

SELECT * ANSWER

FROM STAFF_V1 V1 ====================

FULL JOIN ID NAME ID JOB
STAFF V2 V2 ee eemeeeen oo oo

ON V1.ID = V2.ID 10 Sanders - -

WHERE V1.ID < 30 20 Pernal 20 Sales

ORDER BY 1,3,4;
Figure 528, Outer join V1.ID < 30, check applied in WHERE (after join)

In the next example the "V 1.ID < 30" check is done during the outer join where it does not
any eliminate rows, but rather limits those that match in the two views:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL JOIN ID NAME ID JOB
STAFF V2 V2 o mmeeooom oo oo
ON V1.ID = V2.ID 10 Sanders - -
AND V1.ID < 30 20 Pernal 20 Sales
ORDER BY 1,3,4; 30 Marenghi - -
- - 30 Clerk
- - 30 Mgr
- - 40 Sales
- 50 Mgr

Figure 529, Outer join V1.ID < 30, check applied in ON (during join)

Imagine that what really wanted to have the "V 1.ID < 30" check to only apply to those rows
inthe "V 1" table. Then one has to apply the check before the join, which requires the use of a
nested-table expression:

SELECT * ANSWER
FROM (SELECT =* ====================
FROM STAFF_V1 ID NAME ID JOB
WHERE ID < 30) AS V1l —- mmmmmmmm oo oo -
FULL OUTER JOIN 10 Sanders - -
STAFF V2 V2 20 Pernal 20 Sales
ON V1.ID = V2.ID - - 30 Clerk
ORDER BY 1,3,4; - - 30 Mgr
- - 40 Sales
50 Mgr

Figure 530, Outer join V1.ID < 30, check applied in WHERE (before join)

Observe how in the above query we still got arow back with an ID of 30, but it came from
the "V 2" table. This makes sense, because the WHERE condition had been applied before we
got to thistable.

There are several incorrect ways to answer the above question. In the first example, we shall
keep al non-matching V2 rows by allowing to pass any null V1.I1D values:

Joins 187

SELECT *

FROM STAFF_V1 V1

FULL OUTER JOIN
STAFF_V2 V2

ON V1i.ID = V2.ID
WHERE V1.ID < 30
OR V1.ID IS NULL

ORDER BY 1,3,4;

Graeme Birchall ©

10 Sanders
20 Pernal

Figure 531, Outer join V1.ID < 30, (giveswrong answer - see text

20 Sales
40 Sales
50 Mgr

There are two problems with the above query: First, it is only appropriate to use when the
V11D field isdefined as not null, which it isin this case. Second, we lost the row inthe V2
table where the ID equaled 30. We can fix this latter problem, by adding another check, but

the answer is still wrong:

SELECT *

FROM STAFF_V1 V1

FULL OUTER JOIN
STAFF_V2 V2

ON V1.ID = V2.ID
WHERE V1.ID < 30
OR V1.ID = V2.ID
OR V1.ID IS NULL

ORDER BY 1,3,4;

Figure 532, Outer join V1.ID < 30, (giveswrong answer - see text)

10 Sanders
20 Pernal

30 Marenghi
30 Marenghi

20 Sales
30 Clerk
30 Mgr
40 Sales
50 Mgr

The last two checks in the above query ensure that every V2 row isreturned. But they also
have the affect of returning the NAME field from the V 1 table whenever there is a match.

Given our intentions, this should not happen.

SUMMARY : Query WHERE conditions are applied after the join. When used in an outer
join, this means that they applied to al rows from all tables. In effect, this means that any
WHERE conditionsin afull outer join will, in most cases, turn it into aform of inner join.

Cartesian Product

A Cartesian Product isaform of inner join, where the join predicates either do not exist, or
where they do a poor job of matching the keysin the joined tables.

STAFF_V1 STAFF_V2
R + B +
ID | NAME ID|JOB
10|Sanders 20|Sales
20| Pernal 30|Clerk
30 |Marenghi 30 |Mgr
o mm - — - + 40| Sales
50 |Mgr
+o--- - - - - +

Figure 533, Example of Cartesian Product

CARTESIAN-PRODUCT

10 Sanders
10 Sanders
10 Sanders
10 Sanders
10 Sanders
20 Pernal
20 Pernal
20 Pernal
20 Pernal
20 Pernal
30 Marenghi
30 Marenghi
30 Marenghi
30 Marenghi
30 Marenghi

Writing a Cartesian Product is simplicity itself. One simply omits the WHERE conditions:

188

Join Types

DB2 UDB/V8.1 Cookbook ©

SELECT *

FROM STAFF_V1 V1
,STAFF_V2 V2

ORDER BY V1.ID
,V2.ID
,V2.JOB;

Figure 534, Cartesian Product SQL (1 of 2)

One way to reduce the likelihood of writing afull Cartesian Product is to aways use the in-
ner/outer join style. With this syntax, an ON predicate is aways required. There is however
no guarantee that the ON will do any good. Witness the following example:

SELECT *

FROM STAFF_V1 V1

INNER JOIN
STAFF_V2 V2

ON 'AT <> "B’

ORDER BY V1.ID
,V2.ID
,V2.JOB;

Figure 535, Cartesian Product SQL (2 of 2)

A Cartesian Product is almost always the wrong result. There are very few business situations
where it makes sense to use the kind of SQL shown above. The good news is that few people
ever make the mistake of writing the above. But partia Cartesian Products are very common,
and they are also almost always incorrect. Here is an example:

SELECT V2A.ID ANSWER
,V2A.JOB ===========
,V2B.ID ID JOB ID
FROM STAFF_V2 v2a = mmmm= =
,STAFF V2 V2B 20 Sales 20
WHERE V2A.JOB = V2B.JOB 20 Sales 40
AND V2A.ID < 40 30 Clerk 30
ORDER BY V2A.ID 30 Mgr 30
,V2B.ID; 30 Mgr 50

Figure 536, Partial Cartesian Product SQL

In the above example we joined the two views by JOB, which is not a unique key. The result
was that for each JOB value, we got amini Cartesian Product.

Cartesian Products are at their most insidious when the result of the (invalid) join isfeed into
aGROUPBY or DISTINCT statement that removes al of the duplicate rows. Below is an
example where the only clue that things are wrong is that the count is incorrect:

SELECT V2 .JOB ANSWER
,COUNT (*) AS #ROWS —==========
FROM STAFF_V1 V1 JOB #ROWS
,STAFF_VvV2 Vv2 m---= -----
GROUP BY V2.J0OB Clerk 3
ORDER BY #ROWS Mgr 6
,V2.J0B; Sales 6

Figure 537, Partial Cartesian Product SQL, with GROUP BY

To really mess up with a Cartesian Product you may have to join more than one table. Note
however that big tables are not required. For example, a Cartesian Product of five 100-row
tables will result in 10,000,000,000 rows being returned.

HINT: A good rule of thumb to use when writing ajoinisthat for all of the tables (except
one) there should be equal conditions on al of the fields that make up the various unique
keys. If thisis not true then it is probable that some kind Cartesian Product is being done and
the answer may be wrong.

Joins 189

Graeme Birchall ©

Join Notes

Using the COALESCE Function

If you don't like working with nulls, but you need to do outer joins, then lifeistough. In an
outer join, fieldsin non-matching rows are given null values as placeholders. Fortunately,
these nulls can be eliminated using the COALESCE function.

The COALESCE function can be used to combine multiple fields into one, and/or to elimi-
nate null values where they occur. The result of the COALESCE is always the first non-null
value encountered. In the following example, the two ID fields are combined, and any null
NAME values are replaced with a question mark.

SELECT COALESCE (V1.ID,V2.ID) AS ID ANSWER
, COALESCE (V1.NAME, '?’) AS NAME =================
,V2.J0B ID NAME JOB
FROM STAFF_V1 V1 - mmmm——-- -
FULL OUTER JOIN 10 Sanders -
STAFF_V2 V2 20 Pernal Sales
ON V1.ID = V2.ID 30 Marenghi Clerk
ORDER BY V1.ID 30 Marenghi Mgr
,V2.J0B; 40 ? Sales
50 ? Mgr

Figure 538, Use of COALESCE function in outer join

Listing non-matching rows only

Imagine that we wanted to do an outer join on our two test views, only getting those rows that
do not match. Thisisasurprisingly hard query to write.

STAFF_V1 STAFF_V2 ANSWER
e + I + NON-MATCHING ===================
ID|NAME ID|JOB OUTER-JOIN ID NAME ID JOB
U R s o o ____ o ____
10| Sanders 20|Sales 10 Sanders - -
20| Pernal 30|Clerk - - 40 Sales
30 |Marenghi 30 |Mgr - - 50 Mgr
+ommmm - + 40|Sales
50 |Mgr
Fommmm—— - +

Figure 539, Example of outer join, only getting the non-matching rows

One way to express the above isto use the standard inner-join syntax:

SELECT V1.* <== Get all the rows
,CAST (NULL AS SMALLINT) AS ID in STAFF V1 that
,CAST (NULL AS CHAR(5)) AS JOB have no matching
FROM STAFF_V1 V1 row in STAFF V2.
WHERE V1.ID NOT IN
(SELECT ID FROM STAFF _V2)
UNION
SELECT CAST (NULL AS SMALLINT) AS ID <== Get all the rows
,CAST (NULL AS VARCHAR(9)) AS NAME in STAFF V2 that
, V2. * have no matching
FROM STAFF_V2 V2 row in STAFF V1.
WHERE V2.ID NOT IN

(SELECT ID FROM STAFF_V1)
ORDER BY 1,3,4;

Figure 540, Outer Join SQL, getting only non-matching rows

190 Join Notes

DB2 UDB/V8.1 Cookbook ©

The above question can also be expressed using the outer-join syntax, but it requires the use
of two nested-table expressions. These are used to assign a label field to each table. Only
those rows where either of the two labels are null are returned:

SELECT *
FROM (SELECT V1.* ,’V1’ AS FLAG FROM STAFF V1 V1) AS V1
FULL OUTER JOIN
(SELECT V2.* ,'V2’ AS FLAG FROM STAFF V2 V2) AS V2
ON V1i.ID = V2.ID
WHERE V1.FLAG IS NULL ANSWER
OR V2.FLAG IS NULL =============================
ORDER BY V1.ID ID NAME FLAG ID JOB FLAG
,V2.ID - - —
,V2.J0B; 10 Sanders V1 - - -
- - - 40 Sales V2
- - - 50 Mgr V2
Figure 541, Outer Join SQL, getting only non-matching rows
Alternatively, one can use two common table expressions to do the same job:
WITH
V1l AS (SELECT V1.+* , V1’ AS FLAG FROM STAFF_V1 V1)
,V2 AS (SELECT V2.* ,’V2’ AS FLAG FROM STAFF V2 V2)
SELECT *
FROM V1 V1 ANSWER
FULL OUTER JOIN =============================
V2 V2 ID NAME FLAG ID JOB FLAG
ON V1i.ID = V2.ID -- === - == === --=-
WHERE V1.FLAG IS NULL 10 Sanders V1 - - -
OR V2.FLAG IS NULL - - - 40 Sales V2
ORDER BY V1.ID, V2.ID, V2.JOB; - 50 Mgr V2

Figure 542, Outer Join SQL, getting only non-matchi ng rows

If either or both of the input tables have afield that is defined as not null, then label fields can
be discarded. For example, in our test tables, thetwo ID fields will suffice:

SELECT * STAFF_V1 STAFF_V2
FROM STAFF_V1 V1 tmmmm - + E e +
FULL OUTER JOIN ID|NAME ID|JOB
STAFF_V2 V2 ——|m—————— -—|==——--
ON Vi.ID = V2.ID 10|Sanders 20|Sales
WHERE V1.ID IS NULL 20 |Pernal 30 |Clerk
OR V2.ID IS NULL 30|Marenghi 30 |Mgr
ORDER BY V1.ID - m - - + 40 |Sales
,V2.ID 50 |Mgr
,V2.J0B; e e e +

Figure 543, Outer Join SQL, getting only non-matching rows

Join in SELECT Phrase

Imagine that we want to get selected rows from the V1 view, and for each matching row, get
the corresponding JOB from the V2 view - if thereis one:

STAFF V1

ID | NAME
10|Sanders
20| Pernal
30 |Marenghi

Figure 544, Left outer join example

Joins

STAFF_V2

LEFT OUTER JOIN

V1.ID = V2.ID --
V1.ID <> 30

10 Sanders - -
20 Pernal

20 Sales

191

Graeme Birchall ©

Here is one way to express the above as a query:

SELECT V1.ID ANSWER
,V1.NAME =================
,V2.J0B ID NAME JOB
FROM STAFF_ Vvi vl m- m------- —o——
LEFT OUTER JOIN 10 Sanders -
STAFF_V2 V2 20 Pernal Sales
ON V1i.ID = V2.ID
WHERE V1.ID <> 30

ORDER BY V1.ID ;
Figure 545, Outer Join donein FROM phrase of SQL

Below isalogically equivalent left outer join with the join placed in the SELECT phrase of
the SQL statement. In this query, for each matching row in STAFF_V 1, thejoin (i.e. the
nested table expression) will be done:

SELECT V1.ID ANSWER
, V1.NAME =================
, (SELECT V2.J0B ID NAME JB
FROM STAFF V2 V2 == m------- —----
WHERE V1.ID = V2.ID) AS JB 10 Sanders -
FROM STAFF V1 V1 20 Pernal Sales
WHERE V1.ID <> 30

ORDER BY V1.ID;
Figure 546, Outer Join donein SELECT phrase of SQL

Certain rules apply when using the above syntax:

e Thenested table expression in the SELECT is applied after all other joins and sub-queries
(i.e. in the FROM section of the query) are done.

e The nested table expression acts as a left outer join.
e Only one column and row (at most) can be returned by the expression.
e |f norow isreturned, the result isnull.

Given the above restrictions, the following query will fail because more than one V2 row is
returned for every V1 row (for ID = 30):

SELECT V1.ID ANSWER
,V1.NAME =================
, (SELECT V2.JOB ID NAME JB
FROM STAFF_ V2 v2 - m------- —-——
WHERE V1.ID = V2.ID) AS JB 10 Sanders -
FROM STAFF_V1 V1 20 Pernal Sales
ORDER BY V1.ID; <error>

Figure 547, Outer Join donein SELECT phrase of SQL - getserror

To make the above query work for all IDs, we have to decide which of the two matching JOB
values for ID 30 we want. Let us assume that we want the maximum:

SELECT V1.ID ANSWER
, V1.NAME =================
, (SELECT MAX (V2.J0OB) ID NAME JB
FROM STAFF V2 V2 == m------- —----
WHERE V1.ID = V2.ID) AS JB 10 Sanders -
FROM STAFF V1 V1 20 Pernal Sales
ORDER BY V1.ID; 30 Marenghi Mgr

Figure 548, Outer Join donein SELECT phrase of QL - fixed
The above is equivaent to the following query:

192 Join Notes

DB2 UDB/V8.1 Cookbook ©

SELECT V1.ID ANSWER
, V1.NAME =================
,MAX (V2.J0OB) AS JB ID NAME JB
FROM STAFF_ v1i vl == mmmm---- ——-—
LEFT OUTER JOIN 10 Sanders -
STAFF V2 V2 20 Pernal Sales
ON V1.ID = V2.ID 30 Marenghi Mgr
GROUP BY V1.ID
,V1.NAME

ORDER BY V1.ID ;
Figure 549, Same as prior query - using join and GROUP BY

The above query is rather misleading because someone unfamiliar with the data may not un-
derstand why the NAME field isin the GROUP BY. Obviously, it is not there to remove any
rows, it ssmply needs to be there because of the presence of the MAX function. Therefore, the
preceding query is better because it is much easier to understand. It is also probably more
efficient.

CASE Usage

The SELECT expression can be placed in a CASE statement if needed. To illustrate, in the
following query we get the JOB from the V2 view, except when the person is a manager, in
which case we get the NAME from the corresponding row in the V1 view:

SELECT V2.ID ANSWER
, CASE ===========
WHEN V2.J0B <> ’'Mgr’ ID J2
THEN V2.J0B = —mmm—— -
ELSE (SELECT V1.NAME 20 Sales
FROM STAFF_Vl V1 30 Clerk
WHERE V1.ID = V2.ID) 30 Marenghi
END AS J2 40 Sales
FROM STAFF_V2 V2 50 -
ORDER BY V2.ID
,J2;

Figure 550, Sample Views used in Join Examples
Multiple Columns

If you want to retrieve two columns using this type of join, you need to have two independent
nested table expressions:

SELECT V2.ID ANSWER
,V2.JOB ====================
, (SELECT V1.NAME ID JOB NAME N2
FROM STAFF_ V1 vl -= m---- m--m—--- o
WHERE V2.ID = V1.ID) 20 Sales Pernal 6
, (SELECT LENGTH (V1.NAME) AS N2 30 Clerk Marenghi 8
FROM STAFF_V1 V1 30 Mgr Marenghi 8
WHERE V2.ID = V1.ID) 40 Sales - -
FROM STAFF_V2 V2 50 Mgr - -
ORDER BY V2.ID
,V2.J0B;

Figure 551, Outer Join donein SELECT, 2 columns

An easier way to do the above isto write an ordinary left outer join with the joined columns
inthe SELECT list. Toillustrate this, the next query islogicaly equivalent to the prior:

Joins 193

SELECT V2.ID
,V2.JOB
,V1.NAME
, LENGTH (V1 .NAME)
FROM STAFF V2 V2

LEFT OUTER JOIN

STAFF V1 V1

ON Vv2.ID =
ORDER BY V2.ID
,V2.JOB;

V1.ID

AS N2

Figure 552, Outer Join donein FROM, 2 columns

Column Functions

Graeme Birchall ©

ANSWER

ID JOB NAME N2
20 Sales Pernal 6
30 Clerk Marenghi 8
30 Mgr Marenghi 8
40 Sales - -
50 Mgr - -

Thisjoin style lets one easily mix and match individual rows with the results of column func-
tions. For example, the following query returns arunning SUM of the ID column:

SELECT V1.ID
,V1.NAME
, (SELECT SUM(X1.ID)
FROM STAFF V1 X1
WHERE X1.ID <= V1.ID
)AS SUM_ID
FROM STAFF V1 V1
ORDER BY V1.ID

,V2.J0B;

Figure 553, Running total, using JOIN in SELECT

An easier way to do the same as the above isto use an OLAP function:

,SUM(ID) OVER(ORDER BY ID) AS SUM ID

SELECT V1.ID
, V1.NAME
FROM STAFF_V1 V1

ORDER BY V1.ID;

Figure 554, Running total, using OLAP function

Predicates and Joins, a Lesson

ANSWER

ID NAME SUM ID
10 Sanders 10
20 Pernal 30
30 Marenghi 60
ANSWER

ID NAME SUM_1ID
10 Sanders 10
20 Pernal 30
30 Marenghi 60

Imagine that one wants to get all of therowsin STAFF_V1, and to aso join those matching
rowsin STAFF_V2 where the JOB beginswithan’S":

STAFF V1

Sanders
Pernal
Marenghi

+
Figure 555, Outer join,

194

STAFF_V2

+

V1.ID =
V2.J0B LIKE

OUTER-JOIN CRITERIA

V2.ID

rg%’

with WHERE filter

Thefirst query below gives the wrong answer. It is wrong because the WHERE is applied
after the join, so eliminating some of the rowsin the STAFF V1 table:

SWER

NAME JOB
Sanders -
Pernal Sales
Marenghi -

Join Notes

DB2 UDB/V8.1 Cookbook ©

SELECT V1.ID ANSWER (WRONG)
, V1.NAME =================
,V2.J0B ID NAME JOB
FROM STAFF_ v1i vl == mmmm---- ——-—
LEFT OUTER JOIN 20 Pernal Sales
STAFF_V2 V2
ON V1.ID = V2.ID
WHERE V2.J0OB LIKE 'S%’
ORDER BY V1.1ID
,V2.J0B;

Figure 556, Outer Join, WHERE done after - wrong

In the next query, the WHERE is moved into a nested table expression - so it is done before
thejoin (and against STAFF_V 2 only), thus giving the correct answer:

SELECT V1.ID ANSWER
, V1.NAME —================
,V2.J0B ID NAME JOB
FROM STAFF_ v1i vl == mmmm---- ——-—
LEFT OUTER JOIN 10 Sanders -
(SELECT * 20 Pernal Sales
FROM STAFF V2 30 Marenghi -
WHERE JOB LIKE ’'S%’
)AS V2
ON V1.ID = V2.ID
ORDER BY V1.ID
,V2.J0B;

Figure 557, Outer Join, WHERE done before - correct

The next query does the join in the SELECT phrase. In this case, whatever predicates arein
the nested table expression apply to STAFF_V2 only, so we get the correct answer:

SELECT V1.ID ANSWER
, V1.NAME —================
, (SELECT V2.J0OB ID NAME JOB
FROM STAFF_ V2 v2 -= m------- —--o-
WHERE V1.ID = V2.ID 10 Sanders -
AND V2.J0OB LIKE ’'S%') 20 Pernal Sales
FROM STAFF_V1 V1 30 Marenghi -
ORDER BY V1.ID
,JOB;

Figure 558, Outer Join, WHERE done independently - correct

Joins - Things to Remember

e Youget nullsin an outer join, whether you want them or not, because the fields in non-
matching rows are set to null. If they bug you, use the COALESCE function to remove
them. See page 190 for an example.

e Fromalogica perspective, al WHERE conditions are applied after the join. For per-
formance reasons, DB2 may apply some checks before the join, especially in aninner
join, where doing this cannot affect the result set.

¢ All WHERE conditions that join tables act asif they are doing an inner join, even when
they are written in an outer join.

e TheON checksin afull outer join never remove rows. They simply determine what rows
are matching versus not (see page 184). To eliminate rowsin an outer join, one must use
a WHERE condition.

e TheON checksin a partial outer join work differently, depending on whether they are
against fieldsin the table being joined to, or joined from (see page 182).

Joins 195

Graeme Birchall ©

e A Cartesian Product is not an outer join. It is a poorly matching inner join. By contrast, a
true outer join gets both matching rows, and non-matching rows.

e TheNODENUMBER and PARTITION functions cannot be used in an outer join. These
functions only work on rowsin real tables.

When the join is defined in the SELECT part of the query (see page 191), it is done after any
other joins and/or sub-queries specified in the FROM phrase. And it acts asiif it is aleft outer
join.

Complex Joins

When one joins multiple tables using an outer join, one must consider carefully what exactly
what one wants to do, because the answer that one gets will depend upon how one writes the
query. Toillustrate, the following query first gets a set of rows from the employee table, and
then joins (from the employee table) to both the activity and photo tables:

SELECT eee.empno ANSWER
,aaa.projno ==========================
,aaa.actno EMPNO PROJNO ACTNO FORMAT
,ppp.photo_format AS format = = ------ ------ ----- -
FROM employee eee 000010 MA2110 10 -
LEFT OUTER JOIN 000070 - - -
emp_act aaa 000130 - - bitmap
ON eee.empno = aaa.empno 000150 MA2112 60 bitmap
AND aaa.emptime = 1 000150 MA2112 180 bitmap
AND aaa.projno LIKE 'M%1%’ 000160 MA2113 60 -

LEFT OUTER JOIN
emp_photo ppp

ON eee.empno = ppp.empno <*—
AND ppp.photo format LIKE ’'b%’
WHERE eee.lastname LIKE ’'%A%’

AND eee.empno < '000170"

AND eee.empno <> 000030

ORDER BY eee. empno ;
Figure 559, Join from Employee to Activity and Photo

Observe that we got photo data, even when there was no activity data. Thisis because both
tables were joined directly from the employee table. In the next query, we will again start at
the employee table, then join to the activity table, and then from the activity table join to the
photo table. We will not get any photo data, if the employee has no activity:

SELECT eee.empno ANSWER
,aaa.projno =======S=s=s=s=s=s=SSSSSSSs====S
,aaa.actno EMPNO PROJNO ACTNO FORMAT
,ppp.photo_format AS format = = = ------ ------ —---- oo
FROM employee eee 000010 MA2110 10 -
LEFT OUTER JOIN 000070 - - -
emp_act aaa 000130 - - -
ON eee.empno = aaa.empno 000150 MA2112 60 bitmap
AND aaa.emptime = 1 000150 MA2112 180 bitmap
AND aaa.projno LIKE 'M%1%’ 000160 MA2113 60 -

LEFT OUTER JOIN
emp photo ppp

ON aaa.empno = ppp.empno «—
AND ppp.photo format LIKE ’'b%’
WHERE eee.lastname LIKE ’%A%’'

AND eee.empno < 000170

AND eee.empno <> 000030

ORDER BY eee.empno;
Figure 560, Join from Employee to Activity, then from Activity to Photo

The only difference between the above two queriesisthe first line of the second ON.

196 Join Notes

DB2 UDB/V8.1 Cookbook ©

Outer Join followed by Inner Join

Mixing and matching inner and outer joins in the same query can cause one to get the wrong
answer. Toillustrate, the next query has an inner join, followed by an outer join, followed by
an inner join. We are trying to do the following:

e Get alist of matching departments - based on some local predicates.

¢ For each matching department, get the related employees. If no employees exist, do not
list the department (i.e. inner join).

o For each employee found, list their matching activities, if any (i.e. left outer join).

e For each activity found, only list it if its project-name contains the letter "Q" (i.e. inner
join between activity and project).

Below isthe wrong way to write this query. It is wrong because the final inner join (between
activity and project) turns the preceding outer join into an inner join. This causes an employee
to not show when there are no matching projects:
SELECT ddd.deptno AS dp#
, €€ee.empno
,aaa.projno
, PPP - projname

FROM (SELECT *
FROM department
WHERE deptname LIKE ’'3%A%’
AND deptname NOT LIKE '%U%’
AND deptno < 'E’
)AS ddd
INNER JOIN
employee eee
ON ddd.deptno = eee.workdept
AND eee.lastname LIKE ’'%A%’
LEFT OUTER JOIN
emp_act aaa
ON aaa.empno = eee.empno
AND aaa.emptime <= 0.5
INNER JOIN
project ppPp
ON aaa.projno = ppp.projno
AND ppp.projname LIKE ’%Q%’
ORDER BY ddd.deptno
, eee.empno ANSWER

,aaa.projno; —=—==============================

C01 000030 IF1000 QUERY SERVICES
C01 000130 IF1000 QUERY SERVICES

Figure 561, Complex join - wrong

Aswas stated above, we really want to get all matching employees, and their related activities
(projects). If an employee has no matching activates, we still want to see the employee.

The next query gets the correct answer by putting the inner join between the activity and pro-
ject tablesin parenthesis, and then doing an outer join to the combined result:

Joins 197

ddd
,eee
, XXX
, XXX

SELECT

FROM

.deptno AS dp#
.empno

.projno
.projname

(SELECT *
FROM
WHERE
AND
AND

department

deptname LIKE ’
deptname NOT LIKE '/
deptno < /!

o7
)
o7
3

A
U

[o° o

)AS ddd

INNER JOIN

employee

ddd
eee

ON
AND

eee
.deptno =
.lastname LIKE

eee.workdept

'3A%"

LEFT OUTER JOIN

(SELECT

FROM

aaa.empno
,aaa.emptime
,aaa.projno

, PPP . projname
emp_act aaa

INNER JOIN

ON
AND

project jejejel
aaa.projno =
ppp.projname LIKE

)AS XXX

ON
AND

XXX .
XXX .
ORDER BY ddd.
,eee.
, XXX .

empno
emptime <
deptno

empno

projno;

EMPNO
000030
000130
000070
000240

Figure 562, Complex join - right

Graeme Birchall ©

PROJNO PROJNAME

IF1000 QUERY SERVICES
IF1000 QUERY SERVICES

Thelesson to be learnt hereisthat if a subsequent inner join acts upon datain a preceding
outer join, then it, in effect, turns the former into an inner join.

198

Join Notes

DB2 UDB/V8.1 Cookbook ©

Sub-Query

Sub-queries are hard to use, tricky to tune, and often do some strange things. Consequently, a
lot of peopletry to avoid them, but this is stupid because sub-queries are redlly, really, useful.
Using arelational database and not writing sub-queriesis almost as bad as not doing joins.

A sub-query isaspecial type of full-select that is used to relate one table to another without
actually doing ajoin. For example, it lets one select all of the rows in one table where some
related value exists, or does not exist, in another table.

Sample Tables

Two tables will be used in this section. Please note that the second sample table has a mixture
of null and not-null vaues:

CREATE TABLE tablel TABLE1 TABLE2
(tla CHAR (1) NOT NULL 4o 4 mmmmmmm—m - +
,tlb CHAR (2) NOT NULL T1A|T1B T2A|T2B|T2C
,PRIMARY KEY(tla)); e e e -
COMMIT; A |AA A |Ao |a

B BB B |A -
CREATE TABLE table2 c cc A +
(t2a CHAR (1) NOT NULL 4o + "-v = null
,t2b CHAR (1) NOT NULL
,t2c CHAR(1)) ;
INSERT INTO tablel VALUES (’A’,’AA’), ('B’,’BB’), ('C’,'CC’);
INSERT INTO table2 VALUES (’A’,’A’,’A’'),(’B’,’A’,NULL) ;

Figure 563, Sample tables used in sub-query examples

Sub-query Flavours

Sub-query Syntax

A sub-query compares an expression against afull-select. The type of comparison doneisa

function of which, if any, keyword is used:
F expression ——— =, <, >, <> etc E % ('subselect) 4}

SOME
ANY
ALL

EXISTS

. noT LN
Figure 564, Sub-query syntax diagram
The result of doing a sub-query check can be any one of the following:
e True, in which case the current row being processed is returned.
e False, inwhich case the current row being processed is rejected.
e Unknown, which isfunctionally equivalent to false.

e A SQL error, dueto an invalid comparison.

Sub-Query 199

Graeme Birchall ©

No Keyword Sub-Query

One does not have to provide a SOME, or ANY, or IN, or any other keyword, when writing a
sub-query. But if one does not, there are three possible results:

¢ If norow in the sub-query result matches, the answer isfase.
e |f onerow in the sub-query result matches, the answer istrue.
o |f more than one row in the sub-query result matches, you get a SQL error.

In the example below, the T1A field in TABLEL is checked to seeif it equals the result of the
sub-query (against T2A in TABLE?2). For the value "A" there is a match, while for the values
"B" and "C" there is no match:

SELECT * ANSWER
FROM tablel =======
WHERE tla = T1A T1B
(SELECT t2a e
FROM table2 A aa
WHERE t2a = 'A’');
SUB-Q TABLE1l TABLE2
RESLT +------- + - ------ +
+---+ T1A|T1B T2A |T2B|T2C
T2A| |---|---| |---|---|---
--- A AA A A A
A B BB B A -
+---+ c cc R +
+--mm- - + "-" = null

Figure 565, No keyword sub-query, works

The next example gets a SQL error. The sub-query returns two rows, which the "=I" check
cannot process. Had an "= ANY" or an "= SOME" check been used instead, the query would
have worked fine:

SELECT * ANSWER
FROM tablel =======
WHERE tla = <error>

(SELECT t2a
FROM table2);

SUB-Q TABLE1l TABLE2
RESLT +------- + - ------ +
+---+ T1A|T1B T2A | T2B|T2C
T2R| | ---|---| |---|---|---
--- A AA A A A

A B |[BB B |A -

B c cc e +
+---+ +------- + "-" = null

Figure 566, No keyword sub-query, fails

NOTE: There is almost never a valid reason for coding a sub-query that does not use an
appropriate sub-query keyword. Do not do the above.

SOME/ANY Keyword Sub-Query
When a SOME or ANY sub-query check is used, there are two possible results:

o If any row in the sub-query result matches, the answer is true.
o [f the sub-query result is empty, or al nulls, the answer isfalse.

e |f novalue found in the sub-query result matches, the answer is also false.

200 Sub-query Flavours

DB2 UDB/V8.1 Cookbook ©

The query below compares the current T1A value against the sub-query result three times.
Thefirst row (i.e. T1A ="A") fails the test, while the next two rows pass:

SELECT * ANSWER SUB-Q TABLELl TABLE2
FROM tablel ======= RESLT 4------- b e mmmm e — e +
WHERE tla > ANY T1A T1B +---+ T1A|T1B T2A|T2B|T2C
(SELECT t2a === -- T2a| |---|--2| |-o--|-o--f|---
FROM table2) ; B BB --- A AA A A A
C CcC A B BB B A -
B Cc ccC +o-mm - - +
+--=-+ 4+------- + "-" = null

Figure 567, ANY sub-query

When an ANY or ALL sub-query check is used with a "greater than" or similar expression (as
opposed to an "equal” or a"not equal” expression) then the check can be considered similar to
evaluating the MIN or the MAX of the sub-query result set. The following table shows what
type of sub-query check equates to what type of column function:

SUB-QUERY CHECK EQUIVALENT COLUMN FUNCTION

> ANY (sub-qurey) > MINIMUM (sub-query results)
< ANY (sub-query) < MAXIMUM (sub-query results)
> ALL (sub-query) > MAXIMUM (sub-query results)
< ALL (sub-query) < MINIMUM (sub-query results)

Figure 568, ANY and ALL vs. column functions

All Keyword Sub-Query

When an ALL sub-query check is used, there are two possible results:

o [f dl rowsin the sub-query result match, the answer istrue.

e |f there are no rows in the sub-query result, the answer is also true.

o |f any row in the sub-query result does not match, or is null, the answer isfalse.

Below isatypical example of the ALL check usage. Observe that a TABLEL row isreturned
only if the current T1A vaue equals al of the rows in the sub-query result:

SELECT * ANSWER SUB-Q
FROM tablel —====== RESLT
WHERE tla = ALL T1A T1B o4
(SELECT t2b aee - T2B
FROM table2 A aa ---

WHERE t2b >= 'A’); A

A

+---+

Figure 569, ALL sub-query, with non-empty sub-query result

When the sub-query result consists of zero rows (i.e. an empty set) then all rows processed in
TABLEL are deemed to match:

SELECT * ANSWER SUB-Q
FROM tablel ======= RESLT
WHERE tla = ALL T1A T1B oot
(SELECT t2b oo o T2B
FROM table2 A aa -
WHERE t2b >= 'X’'); B BB PR

c cc

Figure 570, ALL sub-query, with empty sub-query result

The above may seem alittle unintuitive, but it actually makes sense, and isin accordance with
how the NOT EXISTS sub-query (see page 203) handles asimilar situation.

Sub-Query 201

Graeme Birchall ©

Imagine that one wanted to get arow from TABLEL where the T1A value matched all of the
sub-query result rows, but if the latter was an empty set (i.e. no rows), one wanted to get a
non-match. Try this:

SELECT * ANSWER
FROM tablel ======
WHERE tla = ALL 0 rows
(SELECT t2b
FROM table2 SQ-#1 SQ-#2 TABLE1l TABLE2
WHERE t2b >= 'X') RESLT RESLT +------- + - m----- +
AND 0 <> +---+ +---+ T1A|T1B T2A|T2B|T2C
(SELECT COUNT (*) T2B ()| |---|---1 |---]---|---
FROM table2 --- --- A |AA A |A |A
WHERE t2b >= 'X’'); +---+ 0 B BB B A -
+---+ C CccC B +
+------- + "-" = null

Figure 571, ALL sub-query, with extra check for empty set

Two sub-queries are done above: The first looksto seeif all matching values in the sub-query
equa the current T1A value. The second confirms that the number of matching valuesin the
sub-query is not zero.

WARNING: Observe that the ANY sub-query check returns false when used against an
empty set, while a similar ALL check returns true.

EXISTS Keyword Sub-Query

So far, we have been taking a value from the TABLEZ1 table and comparing it against one or
more rows in the TABLEZ2 table. The EXISTS phrase does not compare values against rows,
rather it simply looks for the existence or non-existence of rows in the sub-query result set:

o [f the sub-query matches on one or more rows, the result is true.
o |f the sub-query matches on no rows, the result is false.

Below isan EXISTS check that, given our sample data, aways returns true:

SELECT * ANSWER TABLE1l TABLE2
FROM tablel ======= 4------- + t----------- +
WHERE EXISTS T1A T1B T1A|T1B T2A |T2B|T2C
(SELECT * e e e e e e -
FROM table2) ; A aa A AA A A A
B BB B BB B A -
¢ cc ¢ cc e e +
+------- + "-" = null

Figure 572, EXISTS sub-query, always returns a match
Below isan EXISTS check that, given our sample data, aways returns false:

SELECT * ANSWER

FROM tablel ======

WHERE EXISTS 0 rows
(SELECT *

FROM table2
WHERE t2b >= 'X’');

Figure 573, EXISTS sub-query, always returns a non-match

When using an EXISTS check, it doesn't matter what field, if any, is selected in the sub-query
SELECT phrase. What isimportant is whether the sub-query returns arow or not. If it does,
the sub-query returns true. Having said this, the next query is an example of an EXISTS sub-
query that will always return true, because even when no matching rows are found in the sub-
query, the SELECT COUNT (*) statement will return something (i.e. a zero). Arguably, this
query islogically flawed:

202 Sub-query Flavours

DB2 UDB/V8.1 Cookbook ©

SELECT * ANSWER
FROM tablel =======
WHERE EXISTS T1A T1B
(SELECT COUNT(*) —== --

FROM table2 A aa

WHERE t2b = 'X'); B BB

c cc

Figure 574, EXISTS sub-query, always returns a match
NOT EXISTS Keyword Sub-query

TABLE1 TABLE2
——————— B e
T1A|T1B T2A|T2B|T2C
A AA A A A
B BB B A -

C cc to-mmm oo +

The NOT EXISTS phrases looks for the non-existence of rows in the sub-query result set:

o If the sub-query matches on no rows, the result istrue.

o [f the sub-query hasrows, theresult isfalse.

We can use aNOT EXISTS check to create something similar to an ALL check, but with one
very important difference. The two checks will handle nulls differently. To illustrate, consider
the following two queries, both of which will return arow from TABLE1 only when it equals

al of the matching rowsin TABLEZ2:

SELECT * ANSWERS

FROM tablel =======

WHERE NOT EXISTS T1A T1B
(SELECT * - ==
FROM table2 A aa
WHERE t2c >= 'A’

AND t2c <> tla);

SELECT *
FROM tablel
WHERE tla = ALL
(SELECT t2c
FROM table2
WHERE t2c >= 'A');

Figure 575, NOT EXISTSvs. ALL, ignore nulls, find match

TABLE1 TABLE2
——————— R e e
T1A|T1B T2A|T2B|T2C
A AA A A A
B BB B A -

Cc ccC +o-mm - - +

The above two queries are very similar. Both define a set of rowsin TABLE2 where the T2C
valueis greater than or equal to "A", and then both look for matching TABLEZ2 rows that are
not equal to the current T1A value. If arow isfound, the sub-query isfalse.

What happens when no TABLEZ2 rows match the ">=" predicate? Asis shown below, both of

our test queries treat an empty set as a match:

SELECT * ANSWERS
FROM tablel =======
WHERE NOT EXISTS T1A T1B
(SELECT * e -
FROM table2 A aa
WHERE t2c >= ’'X’ B BB
AND t2c <> tla); C CcC

SELECT *

FROM tablel

WHERE tla = ALL
(SELECT t2c
FROM table2
WHERE t2c¢c >= 'X');

Figure 576, NOT EXISTSvs. ALL, ignore nulls, no match

Sub-Query

TABLE1 TABLE2
——————— B e
T1A|T1B T2A|T2B|T2C
A AA A A A
B BB B A -

C ccC to-mmm oo +

203

Graeme Birchall ©

One might think that the above two queries are logically equivalent, but they are not. Asis
shown below, they return different results when the sub-query answer set can include nulls:

SELECT * ANSWER TABLE1l TABLE2
FROM tablel ======= +------- + - ---- +
WHERE NOT EXISTS T1A T1B T1A|T1B T2A|T2B|T2C
(SELECT * —== ——= | eem === e e ==
FROM table2 A aa A AA A A A
WHERE t2c <> tla); B BB B A -
Cc ccC +o-mm - - +
+------- + "-" = null
SELECT * ANSWER
FROM tablel =======
WHERE tla = ALL no rows

(SELECT t2c
FROM table2);

Figure 577, NOT EXISTSvs. ALL, process nulls

A sub-query can only return true or false, but a DB2 field value can either match (i.e. be true),
or not match (i.e. be false), or be unknown. It is the differing treatment of unknown values
that is causing the above two queriesto differ:

e Inthe ALL sub-query, each valuein T1A ischecked against all of the valuesin T2C. The
null value is checked, deemed to differ, and so the sub-query always returns fal se.

o Inthe NOT EXISTS sub-query, each value in T1A is used to find those T2C values that
are not equal. For the T1A values"B" and "C", the T2C value "A" does not equal, so the
NOT EXISTS check will fail. But for the T1A value "A", there are no "not equal” values
in T2C, because a null value does not "not equal” aliteral. So the NOT EXISTS check
will pass.

The following three querieslist those T2C values that do "not equal" agiven T1A value:

SELECT * SELECT * SELECT *

FROM table2 FROM table2 FROM table2
WHERE t2c <> 'A’; WHERE t2c <> 'B’; WHERE t2c <> 'C’;
ANSWER ANSWER ANSWER

T2A T2B T2C T2A T2B T2C T2A T2B T2C

no rows A A A A A A

Figure 578, List of valuesin T2C <> T1A value

To make aNOT EXISTS sub-query that islogically equivalent to the ALL sub-query that we
have used above, one can add an additional check for null T2C values:

SELECT * ANSWER TABLE1 TABLE2
FROM tablel ======= f--————- b mmmmm—— oo +
WHERE NOT EXISTS no rows T1A|T1B T2A|T2B|T2C
(SELECT * === === === ===
FROM table2 A AA A A A
WHERE t2c <> tla B BB B A -
OR t2c IS NULL) ; ¢ cc o e e oo +
+------- + "-" = null

Figure 579, NOT EXISTS- sameas ALL

One problem with the above query isthat it is not exactly obvious. Another isthat the two
T2C predicates will have to be fenced in with parenthesis if other predicates (on TABLE?2)
exist. For these reasons, use an ALL sub-query when that is what you mean to do.

204 Sub-query Flavours

DB2 UDB/V8.1 Cookbook ©

IN Keyword Sub-Query

The IN sub-query check issimilar to the ANY and SOME checks:

o If any row in the sub-query result matches, the answer istrue.

e |f the sub-query result is empty, the answer isfalse.

e If norow in the sub-query result matches, the answer is also false.

e [f dl of thevaluesin the sub-query result are null, the answer isfalse.

Below is an example that compares the T1A and T2A columns. Two rows match:

SELECT * ANSWER TABLE1l TABLE2
FROM tablel ======= +4------- O +
WHERE tla IN T1A T1B T1A|T1B T2A|T2B|T2C
(SELECT t2a === == === |===] ===]---
FROM table2) ; A aa A AA A A A
B BB B BB B A -
C CcC t-—m - +
+------- + "-" = null

Figure 580, IN sub-query example, two matches

In the next example, no rows match because the sub-query result is an empty set:

SELECT * ANSWER
FROM tablel —=====
WHERE tla IN 0 rows

(SELECT t2a
FROM table2
WHERE t2a >= 'X');

Figure 581, IN sub-query example, no matches

TheIN, ANY, SOME, and ALL checksall look for a match. Because one null value does not
equal another null value, having anull expression in the "top" table causes the sub-query to
always returns false:

SELECT * ANSWERS TABLE2
FROM table2 =========== bmmmmm e o +
WHERE t2c IN T2A T2B T2C T2A |T2B|T2C
(SELECT t2¢ mee mee mee = === ==
FROM table2) ; A A A A A A
B A -
SELECT * mm e +
FROM table2 n_n - null

WHERE t2c = ANY
(SELECT t2c
FROM table2) ;

Figure 582, IN and = ANY sub-query examples, with nulls
NOT IN Keyword Sub-Queries

Sub-queries that ook for the non-existence of arow work largely as one would expect, except
when anull value in involved. To illustrate, consider the following query, where we want to
seeif the current T1A vaueis not in the set of T2C values:

SELECT * ANSWER TABLEl TABLE2
FROM tablel ====== 4+------- + - +
WHERE tla NOT IN 0 rows T1A|T1B T2A|T2B|T2C
(SELECT t2¢ === === -
FROM table2) ; A AA A A A
B |BB B |A -
Cc cc +o-mm - - +
+------- + "-" = null

Figure 583, NOT IN sub-query example, no matches

Sub-Query 205

Graeme Birchall ©

Observe that the T1A values"B" and "C" are obviously not in T2C, yet they are not returned.
The sub-query result set contains the value null, which causes the NOT IN check to return
unknown, which equates to false.

The next example removes the null values from the sub-query result, which then enables the
NOT IN check to find the non-matching values:

SELECT * ANSWER TABLE1 TABLE2
FROM tablel ======= +------- + - ---- +
WHERE tla NOT IN T1A T1B T1A|T1B T2A|T2B|T2C
(SELECT t2¢ e e e e e e -
FROM table2 B BB A AA A A A
WHERE t2c IS NOT NULL) ; Cc ccC B BB B A -
C cc +o-mm - - +
+------- + "-" = null

Figure 584, NOT IN sub-query example, matches

Another way to find the non-matching values while ignoring any null rows in the sub-query,
isto use an EXISTS check in a correlated sub-query:

SELECT * ANSWER TABLE1l TABLE2
FROM tablel ======= 4------- + t----------- +
WHERE NOT EXISTS T1A T1B T1A|T1B T2A |T2B|T2C
(SELECT * e e e e e e -
FROM table2 B BB A AA A A A
WHERE tla = t2c); C CcC B BB B A -
C CcC - m - - +
+------- + "-" = null

Figure 585, NOT EXISTS sub-query example, matches

Correlated vs. Uncorrelated Sub-Queries

With the exception of the very last example above, all of the sub-queries shown so far have
been uncorrelated. An uncorrelated sub-query is one where the predicates in the sub-query
part of SQL statement have no direct relationship to the current row being processed in the
"top" table (hence uncorrelated). The following sub-query is uncorrel ated:

SELECT * ANSWER TABLE1l TABLE2

FROM tablel ======= 4----=-=-= B e +
WHERE tla IN T1A T1B T1A|T1B T2A|T2B|T2C
(SELECT t2a === == === ===]---

FROM table2) ; A aa A AA A A A

B BB B |BB B |A -
C cc to-mmm oo +

+--mm- - + "-" = null

Figure 586, Uncorrelated sub-query

A correlated sub-query is one where the predicates in the sub-query part of the SQL statement
cannot be resolved without reference to the row currently being processed in the "top" table
(hence correlated). The following query is correlated:

SELECT * ANSWER TABLE1l TABLE2

FROM tablel ======= +------- + - ------- +

WHERE tla IN T1A T1B T1A|T1B T2A | T2B|T2C
(SELECT t2a === == === === e -
FROM table2 A aa A AA A A A
WHERE tla = t2a); B BB B BB B A -

C cc to-mmm oo +
+------- + "-" = null

Figure 587, Correlated sub-query

Below is another correlated sub-query. Because the same table is being referred to twice, cor-
relation names have to be used to delineate which column belongs to which table:

206 Sub-query Flavours

DB2 UDB/V8.1 Cookbook ©

SELECT * ANSWER TABLE2
FROM table2 aa =========== 4---—--———--- +
WHERE EXISTS T2A T2B T2C T2A|T2B|T2C
(SELECT * aee e mee e e ==
FROM table2 bb A A A A A A
WHERE aa.t2a = bb.t2b); B A -
e +
"-m = null

Figure 588,Correlated sub-query, with correlation names
Which is Faster

In generadl, if thereis a suitable index on the sub-query table, use a correlated sub-query. Else,
use an uncorrelated sub-query. However, there are several very important exceptions to this
rule, and some queries can only be written one way.

NOTE: The DB2 optimizer is not as good at choosing the best access path for sub-queries
as it is with joins. Be prepared to spend some time doing tuning.
Multi-Field Sub-Queries

Imagine that you want to compare multiple items in your sub-query. The following examples
use an IN expression and a correlated EXISTS sub-query to do two equality checks:

SELECT * ANSWER TABLEl TABLE2
FROM tablel ====== +4------- + t----------- +
WHERE (tla,tlb) IN 0 rows T1A|T1B T2A|T2B|T2C
(SELECT t2a, t2b ===l ===| |===|-=-=|---
FROM table2) ; A AA A A A
B BB B A -
C CcC - m - - +
+------- + "-" = null
SELECT * ANSWER
FROM tablel —=====
WHERE EXISTS 0 rows
(SELECT *
FROM table2
WHERE tla = t2a
AND tlb = t2b);

Figure 589, Multi-field sub-queries, equal checks

Observe that to do a multiple-value IN check, you put the list of expressions to be compared
in parenthesis, and then select the same number of items in the sub-query.

AnIN phraseislimited because it can only do an eguality check. By contrast, use whatever
predicates you want in an EXISTS correlated sub-query to do other types of comparison:

SELECT * ANSWER TABLE1 TABLE2
FROM tablel ======= +4------- O +
WHERE EXISTS T1A T1B T1A|T1B T2A|T2B|T2C
(SELECT * e e e == e -
FROM table2 A aa A AA A A A
WHERE tla = t22a B BB B BB B A -
AND tlb >= t2b); C cc o m e o +
+o-mm--- + "-" = null

Figure 590, Multi-field sub-query, with non-equal check

Nested Sub-Queries

Some business questions may require that the related SQL statement be written as a series of
nested sub-queries. In the following example, we are after all employeesin the EMPLOY EE
table who have a salary that is greater than the maximum salary of al those other employees
that do not work on a project with a name beginning 'MA".

Sub-Query 207

Graeme Birchall ©

SELECT empno ANSWER
, lastname =========================
,salary EMPNO LASTNAME SALARY
FROM employee mmmmmm mmmmmmmmm oo oo -
WHERE salary > 000010 HAAS 52750.00
(SELECT MAX (salary) 000110 LUCCHESSTI 46500.00

FROM employee
WHERE empno NOT IN
(SELECT empno
FROM emp_act
WHERE projno LIKE 'MA%’))
ORDER BY 1;
Figure 591, Nested Sub-Queries

Usage Examples

In this section we will use various sub-queries to compare our two test tables - looking for
those rows where none, any, ten, or al values match.

Beware of Nulls

The presence of null values greatly complicates sub-query usage. Not allowing for them when
they are present can cause one to get what is arguably awrong answer. And do not assume
that just because you don't have any nullable fields that you will never therefore encounter a
null value. The DEPTNO table in the Department table is defined as not null, but in the fol-
lowing query, the maximum DEPTNO that is returned will be null:

SELECT COUNT (*) AS #rows ANSWER

,MAX (deptno) AS maxdpt =============
FROM department #ROWS MAXDEPT
WHERE deptname LIKE ‘Z%' ao-oe oooooo-
ORDER BY 1; 0 null

Figure 592, Getting a null value froma not null field

True if NONE Match

Find all rowsin TABLEL where there are no rows in TABLE2 that have a T2C value equal to
the current T1A valuein the TABLEL table:

SELECT * TABLE1l TABLE2
FROM tablel tl1 +----—-- + - ------ +
WHERE 0 = T1A|T1B T2A |T2B|T2C
(SELECT COUNT (*) S S . .
FROM table2 t2 A AA A A A
WHERE tl.tla = t2.t2c); B BB B A -
C cc to-mmm oo +
SELECT * R + v — null

FROM tablel tl1
WHERE NOT EXISTS

(SELECT * ANSWER

FROM table2 t2 =======

WHERE tl.tla = t2.t2c); T1A T1B
SELECT * B BB
FROM tablel C cc

WHERE tla NOT IN
(SELECT t2c
FROM table2
WHERE t2c IS NOT NULL) ;

Figure 593, Sub-queries, true if none match

208 Usage Examples

DB2 UDB/V8.1 Cookbook ©

Observe that in the last statement above we eliminated the null rows from the sub-query. Had
this not been done, the NOT IN check would have found them and then returned a result of
"unknown" (i.e. false) for al of rowsinthe TABLE1A table.

Using a Join

Another way to answer the same problem is to use aleft outer join, going from TABLE1 to
TABLE2 while matching on the T1A and T2C fields. Get only those rows (from TABLEL)
where the corresponding T2C valueis null:

SELECT tl1.* ANSWER
FROM tablel tl1 =======
LEFT OUTER JOIN T1A T1B

table2 t2 oo o
ON tl.tla = t2.t2c B BB
WHERE t2.t2c IS NULL; C CcC

Figure 594, Outer join, true if none match

True if ANY Match

Find al rowsin TABLE1 where there are one, or more, rowsin TABLE2 that have aT2C
value equal to the current T1A value:

SELECT * TABLE1 TABLE2
FROM tablel t1 +---—-=- + - ---- +
WHERE EXISTS T1A|T1B T2A|T2B|T2C
(SELECT * == e e -
FROM table2 t2 A AA A A A
WHERE tl.tla = t2.t2c); B BB B A -
Cc ccC +o-mm - - +
SELECT * +-—-=-=-==-=- + n_n = null

FROM tablel t1
WHERE 1 <=

(SELECT COUNT (*) ANSWER
FROM table2 t2 =======
WHERE tl.tla = t2.t2c); T1A T1B
SELECT * A aa

FROM tablel

WHERE tla = ANY
(SELECT t2c
FROM table2) ;

SELECT *

FROM tablel

WHERE tla = SOME
(SELECT t2c
FROM table2) ;

SELECT *

FROM tablel

WHERE tla IN
(SELECT t2c
FROM table2) ;

Figure 595, Sub-queries, trueif any match

Of dl of the above queries, the second query is almost certainly the worst performer. All of
the others can, and probably will, stop processing the sub-query as soon as it encounters a
single matching value. But the sub-query in the second statement has to count all of the
matching rows before it return either atrue or false indicator.

Sub-Query 209

Graeme Birchall ©

Using a Join

This question can also be answered using an inner join. Thetrick isto make alist of distinct
T2C values, and then join that list to TABLEL using the T1A column. Several variations on
this theme are given below:

WITH t2 AS TABLE1 TABLE2
(SELECT DISTINCT t2c +------- + t----------- +
FROM table2 T1A|T1B T2A|T2B|T2C
) [[EUEDE U
SELECT tl.* A AA A A A
FROM tablel t1 B BB B A -
,t2 Cc ccC +o-mm - - +
WHERE tl.tla = t2.t2c; - + "-" = null
SELECT tl.*
FROM tablel t1 ANSWER
, (SELECT DISTINCT t2c =======
FROM table2 T1A T1B
)JAS t2 -—- ---
WHERE tl.tla = t2.t2c; A aa

SELECT tl1.*
FROM tablel tl1

INNER JOIN
(SELECT DISTINCT t2c
FROM table2
JAS t2

ON tl.tla = t2.t2c;

Figure 596, Joins, true if any match

True if TEN Match

Find all rowsin TABLEL where there are exactly ten rows in TABLEZ2 that have a T2B value
equal to the current T1A valuein the TABLEL table:

SELECT * TABLE1l TABLE2
FROM tablel tl1 +----—-- + - ------ +
WHERE 10 = T1A|T1B T2A|T2B|T2C
(SELECT COUNT (*) S S .
FROM table2 t2 A AA A A A
WHERE tl.tla = t2.t2b); B BB B A -
C cc to-mmm oo +
SELECT * R + vov o — null

FROM tablel
WHERE EXISTS

(SELECT t2b ANSWER
FROM table2 —=====
WHERE tla = t2b 0 rows
GROUP BY t2b
HAVING COUNT (*) = 10);

SELECT *

FROM tablel
WHERE tla IN
(SELECT t2b

FROM table2
GROUP BY t2b
HAVING COUNT (*) = 10);

Figure 597, Sub-queries, trueif ten match (1 of 2)

The first two queries above use a correlated sub-query. The third is uncorrelated. The next
query, which is also uncorrelated, is guaranteed to befuddle your coworkers. It uses a multi-
field IN (see page 207 for more notes) to both check T2B and the count at the same time:

210 Usage Examples

DB2 UDB/V8.1 Cookbook ©

SELECT * ANSWER
FROM tablel ======
WHERE (tla,10) IN 0 rows
(SELECT t2b, COUNT (*)
FROM table2

GROUP BY t2Db);
Figure 598, Sub-queries, trueif ten match (2 of 2)

Using a Join

To answer this generic question using ajoin, one simply builds adistinct list of T2B values
that have ten rows, and then joins the result to TABLEL:

WITH t2 AS TABLE1l TABLE2
(SELECT t2b [FIRERE 4+ e mmmmmmm— o= +
FROM table2 T1A|T1B T2A | T2B|T2C
GROUP BY t2b | ee === e e ==
HAVING COUNT (*) = 10 A AA A A A
) B BB B |A -

SELECT tl.* C ccC bmmmmm e mm e +

FROM tablel t1 T + n_n - pull

,t2

WHERE tl.tla = t2.t2b;

ANSWER
SELECT tl1.* ======
FROM tablel t1 0 rows
, (SELECT t2b
FROM table2
GROUP BY t2b
HAVING COUNT (*) = 10
)AS t2

WHERE tl.tla = t2.t2b;

SELECT tl1.*
FROM tablel tl1

INNER JOIN
(SELECT t2b
FROM table2

GROUP BY t2b

HAVING COUNT (*) = 10
YJAS t2
ON tl.tla = t2.t2b;

Figure 599, Joins, true if ten match

True if ALL match

Find all rowsin TABLE1 where all matching rowsin TABLE2 have a T2B value equd to the
current T1A valuein the TABLEL table. Before we show some SQL, we need to decide what
to do about nulls and empty sets:

e When nulls are found in the sub-query, we can either deem that their presence makes the
relationship false, which is what DB2 does, or we can exclude nulls from our analysis.

e When there are no rows found in the sub-query, we can either say that the relationship is
false, or we can do as DB2 does, and say that the relationship istrue.

See page 201 for a detailed discussion of the above issues.

The next two queries use the basic DB2 logic for dealing with empty sets; In other words, if
no rows are found by the sub-query, then the relationship is deemed to be true. Likewise, the
relationship is also true if all rows found by the sub-query equal the current T1A value:

Sub-Query 211

Graeme Birchall ©

SELECT * TABLE1l TABLE2
FROM tablel Fmm - b e mm e oo +
WHERE tla = ALL T1A|T1B T2A|T2B|T2C
(SELECT t2b ———| - L
FROM table2) ; A AA A A A
B BB B A -
SELECT * C cc bmmmmm——m— - +
FROM tablel fmmmmmm - + mov o= null
WHERE NOT EXISTS
(SELECT * ANSWER
FROM table2 =======
WHERE tla <> t2b); T1A T1B
A aa

Figure 600, Sub-queries, trueif all match, find rows

The next two queries are the same as the prior, but an extra predicate has been included in the
sub-query to make it return an empty set. Observe that now all TABLEL rows match:

SELECT * ANSWER
FROM tablel =======
WHERE tla = ALL T1A T1B
(SELECT t2b SR
FROM table2 A aa
WHERE t2b >= 'X’'); B BB
C cc
SELECT *
FROM tablel
WHERE NOT EXISTS
(SELECT *
FROM table2
WHERE tla <> t2b
AND t2b >= 'X’');

Figure 601, Sub-queries, trueif all match, empty set
False if no Matching Rows

The next two queries differ from the above in how they address empty sets. The queries will
return arow from TABLEL if the current T1A value matches all of the T2B valuesfound in
the sub-query, but they will not return arow if no matching values are found:

SELECT * TABLE1l TABLE2
FROM tablel R + - ------- +
WHERE tla = ALL T1A|T1B T2A|T2B|T2C
(SELECT t2b --=--- B e
FROM table2 A AA A A A
WHERE t2b >= 'X') B BB B A -
AND 0 <> C CcC - - +
(SELECT COUNT (*) +------- + "-" = null
FROM table2
WHERE t2b >= 'X'); ANSWER
SELECT * 0 rows
FROM tablel
WHERE tla IN
(SELECT MAX (t2b)
FROM table2
WHERE t2b >= ’'X’
HAVING COUNT (DISTINCT t2b) = 1);

Figure 602, Sub-queries, trueif all match, and at Iéast one value found

Both of the above statements have flaws. The first processes the TABLEZ table twice, which
not only involves double work, but aso requires that the sub-query predicates be duplicated.
The second statement isjust plain strange.

212 Usage Examples

DB2 UDB/V8.1 Cookbook ©

Union, Intersect, and Except

A UNION, EXCEPT, or INTERCEPT expression combines sets of columnsinto new sets of
columns. Anillustration of what each operation does with a given set of datais shown below:

o]
[y
o]
N

HOQMQWmW > DI
gNnoww>™P

R1 R1 R1 R1 R1
UNION INTERSECT INTERSECT EXCEPT EXCEPT
ALL R2 ALL R2 ALL
R2 R2 R2
A A A E A
A B A C
A c B c
A B E
A c

B

B

B

B

B

Cc

c

Cc

c

D

E

Figure 603, Examples of Union, Except, and Intersect

WARNING: Unlike the UNION and INTERSECT operations, the EXCEPT statement is not
commutative. This means that "A EXCEPT B" is not the same as "B EXCEPT A".

Syntax Diagram

»_[SELECT statement j—L UNION
VALUES statement I UNION ALL ———

— EXCEPT

— EXCEPT ALL
— INTERSECT
- INTERSECT ALL

Figure 604, Union, Except, and Intersect syntax

Sample Views

CREATE VIEW
AS VALUES
CREATE VIEW
AS VALUES

SELECT R1
FROM R1

ORDER BY R1;

SELECT R2
FROM R2

ORDER BY R2;

SELECT statement]—}
L VALUES statement

R1 (R1)

(IAI),(IAI),(IAI),(IBI),(IBI),(ICI),(ICI),(ICI),(IEI);

R2 (R2)

('a), ('a"), ('B"), (!B"), ('B"), (C"), ('D"); ANSWER
R1 R2
A A
A A
A B
B B
B B
C C
c D
C
E

Figure 605, Query sample views

Union, Intersect, and Except

213

Graeme Birchall ©

. ___|
Usage Notes

Union & Union All

A UNION operation combines two sets of columns and removes duplicates. The UNION
ALL expression does the same but does not remove the duplicates.

SELECT R1 R1 R2 UNION UNION ALL
FROM R1 -— -- ===== =========
UNION A A A A
SELECT R2 A A B A
FROM R2 A B c A
ORDER BY 1; B B D A
B B E A
Cc Cc B
SELECT R1 Cc D B
FROM R1 Cc B
UNION ALL E B
SELECT R2 B
FROM R2 c
ORDER BY 1; Cc
c
Cc
D
E

Figure 606, Union and Union All SQL

NOTE: Recursive SQL requires that there be a UNION ALL phrase between the two main
parts of the statement. The UNION ALL, unlike the UNION, allows for duplicate output
rows which is what often comes out of recursive processing.

Intersect & Intersect All

An INTERSECT operation retrieves the matching set of distinct values (not rows) from two
columns. The INTERSECT ALL returns the set of matching individual rows.

SELECT R1 R1 R2 INTERSECT INTERSECT ALL
FROM R1 -- -- ========= =============
INTERSECT A A A A
SELECT R2 A A B A
FROM R2 A B c B
ORDER BY 1; B B B
B B Cc
SELECT R1 c c
FROM R1 Cc D
INTERSECT ALL c
SELECT R2 E
FROM R2
ORDER BY 1;

Figure 607, Intersect and Intersect All SQL

An INTERSECT and/or EXCEPT operation is done by matching ALL of the columnsin the
top and bottom result-sets. In other words, these are row, not column, operations. It is not
possible to only match on the keys, yet at the same time, also fetch non-key columns. To do
this, one needs to use a sub-query.

Except & Except All

An EXCEPT operation retrieves the set of distinct data values (not rows) that exist in the first
the table but not in the second. The EXCEPT ALL returns the set of individual rows that exist
only in thefirst table.

214 Usage Notes

DB2 UDB/V8.1 Cookbook ©

SELECT R1 R1 R1
FROM R1 EXCEPT EXCEPT ALL
EXCEPT R1 R2 R2 R2
SELECT R2 -- -- ===== ==========
FROM R2 A A E A
ORDER BY 1; A A c
A B C
SELECT R1 B B E
FROM R1 B B
EXCEPT ALL Cc Cc
SELECT R2 C D
FROM R2 Cc
ORDER BY 1; E

Figure 608, Except and Except All SQL (R1 on top)

Because the EXCEPT operation is not commutative, using it in the reverse direction (i.e. R2
to Rl instead of R1 to R2) will give adifferent result:

SELECT R2 R2 R2
FROM R2 EXCEPT EXCEPT ALL
EXCEPT R1 R2 R1 R1
SELECT R1 -- -- ===== ==========
FROM R1 A A D B
ORDER BY 1; A A D
A B
SELECT R2 B B
FROM R2 B B
EXCEPT ALL c c
SELECT R1 C D
FROM R1 c
ORDER BY 1; E

Figure 609, Except and Except All SQL (R2 on top)

NOTE: Only the EXCEPT operation is hot commutative. Both the UNION and the INTER-
SECT operations work the same regardless of which table is on top or on bottom.

Precedence Rules

When multiple operations are done in the same SQL statement, there are precedence rules:
e Operationsin parenthesis are donefirst.

e INTERSECT operations are done before either UNION or EXCEPT.

e Operations of equal worth are done from top to bottom.

The next example illustrates how parenthesis can be used change the processing order:

SELECT R1 (SELECT R1 SELECT R1 R1 R2
FROM R1 FROM R1 FROM R1 -- --
UNION UNION UNION A A
SELECT R2 SELECT R2 (SELECT R2 A A
FROM R2 FROM R2 FROM R2 A B
EXCEPT) EXCEPT EXCEPT B B
SELECT R2 SELECT R2 SELECT R2 B B
FROM R2 FROM R2 FROM R2 c c
ORDER BY 1; ORDER BY 1;)ORDER BY 1; c D
C
E
ANSWER ANSWER ANSWER
E E A
B
c
E

Figure 610, Use of parenthesisin Union

Union, Intersect, and Except 215

Graeme Birchall ©

Unions and Views

Imagine that one has a series of tables that track sales data, with one table for each year. One
can define aview that isthe UNION ALL of these tables, so that a user would seethem as a
single object. Such aview can support inserts, updates, and deletes, as long as each table in
the view has a constraint that distinguishesit from all the others. Below is an example:

CREATE TABLE SALES DATA 2002

(SALES_DATE DATE NOT NULL
,DAILY_ SEQ# INTEGER NOT NULL
,CUST_ID INTEGER NOT NULL
, AMOUNT DEC(10,2) NOT NULL
, INVOICE# INTEGER NOT NULL
, SALES_REP CHAR (10) NOT NULL
,CONSTRAINT C CHECK (YEAR (SALES DATE) = 2002)

, PRIMARY KEY (SALES DATE, DAILY SEQ#));

CREATE TABLE SALES DATA 2003

(SALES_DATE DATE NOT NULL
,DAILY_ SEQ# INTEGER NOT NULL
,CUST_ID INTEGER NOT NULL
, AMOUNT DEC(10,2) NOT NULL
, INVOICE# INTEGER NOT NULL
, SALES_REP CHAR (10) NOT NULL
,CONSTRAINT C CHECK (YEAR (SALES DATE) = 2003)

, PRIMARY KEY (SALES DATE, DAILY SEQ#));

CREATE VIEW SALES DATA AS
SELECT *

FROM SALES_DATA 2002
UNION ALL

SELECT *

FROM SALES_DATA 2003;

Figure 611, Define view to combine yearly tables

Below is some SQL that changes the contents of the above view:

INSERT INTO SALES DATA VALUES (’2002-11-22',1,123,100.10,996,'SUE’)
’2002-11-22",2,123,100.10,997, "JOHN")
’2003-01-01",1,123,100.10,998, 'FRED’)

2003-01-01",2,123,100.10,999, 'FRED') ;

’
’
’

UPDATE SALES_DATA

SET AMOUNT = AMOUNT / 2

WHERE SALES REP = ’'JOHN’;

DELETE

FROM SALES DATA

WHERE SALES DATE = ’2003-01-01'
AND DAILY SEQ# = 2;

Figure 612, Insert, update, and delete using view

Below isthe view contents, after the aboveis run:

SALES DATE DAILY SEQ# CUST ID AMOUNT INVOICE# SALES REP

01/01/2003 1 123 100.10 998 FRED
11/22/2002 1 123 100.10 996 SUE
11/22/2002 2 123 50.05 997 JOHN

Figure 613, View contents after insert, update, delete

216 Usage Notes

DB2 UDB/V8.1 Cookbook ©

Materialized Query Tables

A materialized query table contains the results of a query. The DB2 optimizer knows this and
can, if appropriate, redirect a query that is against the source table, or tables, to use instead the
materialized query table instead. This can make the query run much faster.

The following statement defines a materialized query table:

CREATE TABLE staff summary AS
(SELECT dept
,COUNT (*) AS count_ rows
,SUM(id) AS sum_id
FROM staff
GROUP BY dept)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

Figure 614, Sample materialized query table DDL

Below on the left isaquery that is very similar to the one used in the above CREATE. The
DB2 optimizer can convert this query into the optimized equivalent on the right, which uses
the materialized query table. Because (in this case) the datain the materialized query tableis
maintained in sync with the source table, both statements will return the same answer.

ORIGINAL QUERY OPTIMIZED QUERY
SELECT dept SELECT Ql.dept AS "dept"

,AVG (id) ,Ql.sum_id / Ql.count_ rows
FROM staff FROM staff summary AS Q1

GROUP BY dept
Figure 615, Original and optimized queries

When used appropriately, materialized query tables can result in dramatic improvementsin
query performance. For example, if in the above STAFF table there was, on average, about
5,000 rows per individual department, referencing the STAFF_ SUMMARY table instead of
the STAFF table in the sample query might be about 1,000 times faster.

Usage Notes

A materialized query table is defined using a variation of the standard CREATE TABLE
statement. Instead of providing an element list, one suppliesa SELECT statement, and de-
fines the refresh option:

w CREATE TABLE —_ table-name AS }
[summary _|
F (select stmt) —— DATA INITIALLY DEFERRED REFRESH DEFERRED T’
L \MMEDIATE
} [~ ENABLE QUREY OPTIMIZATION | [MAINTAINED BY SYSTEM | N
L DISABLE QUREY OPTIMIZATION | L MAINTAINED BY USER

Figure 616, Materialized query table DDL, syntax diagram
Below isatypical materialized query table definition:

Materialized Query Tables 217

Graeme Birchall ©

CREATE TABLE emp_summary AS

(SELECT workdept AS dept
, sex AS sex
, COUNT_ BIG(*) AS num_rows
, COUNT (salary) AS num_salary
,SUM (salary) AS sum_salary
, GROUPING (workdept) AS fd
, GROUPING (sex) AS fs

FROM employee

WHERE job = 'MANAGER’

AND lastname LIKE ’'%S%’

GROUP BY CUBE (workdept, sex)
)DATA INITIALLY DEFERRED REFRESH IMMEDIATE
ENABLE QUERY OPTIMIZATION
MAINTAINED BY SYSTEM;

Figure 617, Typical materialized query table definition
Refresh Options

e REFRESH DEFERRED: The datais refreshed whenever one does a REFRESH TABLE.
At thispoint, DB2 will first delete all of the existing rows in the table, then run the select
statement defined in the CREATE to (you guessed it) repopul ate.

e REFRESH IMMEDIATE: Once created, this type of table has to be refreshed once using
the REFRESH statement. From then on, DB2 will maintain the materialized query table
in sync with the source table as changes are made to the latter.

Materialized query tables that are defined REFRESH IMMEDIATE are obviously the most
useful in that the datain them is aways current. But they may cost quite a bit to maintain.

Query Optimization Options

o ENABLE: Thetableisused for query optimization when appropriate. Thisis the default.
The table can also be queried directly.

o DISABLE: Thetable will not be used for query optimization. It can be queried directly.

Maintain Options

e SYSTEM: Thedatain the materialized query table is maintained by the system. Thisis
the default.

e USER: Theuser isallowed to perform insert, update, and del ete operations against the
materialized query table. The table cannot be refreshed. Thistype of table can be used
when you want to maintain your own materialized query table (e.g. using triggers) to
support features not provided by DB2. The table can a so be defined to enable query op-
timization, but the optimizer will probably never useit as a substitute for areal table.

Options vs. Actions

The following table compares materialized query table options to subsequent actions:

MATERIALIZED QUERY TABLE ALLOWABLE ACTIONS ON TABLE
REFRESH MAINTAINED BY REFRESH TABLE INSERT/UPDATE/DELETE
DEFERRED SYSTEM ves no

USER no yes

IMMEDIATE SYSTEM ves
Figure 618, Materialized query table options vs. allowable actions

218 Usage Notes

DB2 UDB/V8.1 Cookbook ©

Select Statement Restrictions

Various restrictions apply to the select statement used to define the materialized query table:
Refresh Deferred Tables

The query must be avalid SELECT statement.

Every column selected must have a name.

An ORDER BY isnot allowed.

Reference to atyped table or typed view is not allowed.

Reference to declared temporary table is not allowed.

Reference to a nickname or materialized query tableis not alowed.

Reference to a system catalogue table is not allowed. Reference to an explain table is al-
lowed, but isimpudent.

Referenceto NODENUMBER, PARTITION, or any other function that depends on
physical characteristics, is not allowed.

Referenceto adatalink typeis not alowed.
Functions that have an externa action are not allowed.

Scalar functions, or functions written in SQL, are not allowed. So SUM(SALARY) is
fine, but SUM(INT(SALARY)) isnot alowed.

Refresh Immediate Tables

All of the above restrictions apply, plus the following:

If the query references more than one table or view, it must define asinner join, yet not
use the INNER JOIN syntax (i.e. must use old style).

The SELECT statement must contain a GROUP BY, unless REPLICATED is specified,
in which case aGROUP BY is not allowed.

The SELECT must have a COUNT(*) or COUNT_BIG(*) column.

Besidesthe COUNT and COUNT _BIG, the only other column functions supported are
SUM and GROUPING - al with the DISTINCT phrase. Any field that allows nulls, and
that is summed, but also have a COUNT (column name) function defined.

Any field in the GROUP BY list must be in the SELECT list.

Thetable must have at least one unique index defined, and the SELECT list must include
(amongst other things) all the columns of thisindex.

Grouping sets, CUBE an ROLLUP are dlowed. The GROUP BY items and associated
GROUPING column functions in the select list must for a unique key of the result set.

The HAVING clauseis not allowed.
The DISTINCT clauseis not allowed.
Non-deterministic functions are not allowed.

Specia registers are not allowed.

Materialized Query Tables 219

Graeme Birchall ©

o |f REPLICATED is specified, the table must have a unique key.

Refresh Deferred Tables

A materialized query table defined REFRESH DEFERRED can be periodically updated using
the REFRESH TABLE command. Below is an example of a such atable that has one row per
qualifying department in the STAFF table:

CREATE TABLE staff names AS
(SELECT dept

, COUNT (*) AS count_rows
,SUM (salary) AS sum_salary
,AVG (salary) AS avg_salary
,MAX (salary) AS max_salary
,MIN (salary) AS min salary
, STDDEV (salary) AS std_salary

, VARIANCE (salary) AS var_ salary
, CURRENT TIMESTAMP AS last change

FROM staff

WHERE TRANSLATE (name) LIKE ’%A%’
AND salary > 10000

GROUP BY dept

HAVING COUNT (*) = 1

)DATA INITIALLY DEFERRED REFRESH DEFERRED;
Figure 619, Refresh deferred materialized query table DDL

Using a Refreshed Deferred Table

Unless told otherwise, the DB2 optimizer will not use a materialized query table that is de-
fined refresh deferred, because it cannot guarantee that the datain the table is up to date. If it
is desired that such atable be referenced when appropriate, one has to set the REFRESH
AGE special register to anon-zero value:

w SET CURRENT REFRESH AGE i number N

t ANY
host-var |

The number referred to above is a 26-digit decimal value that is as a timestamp duration, but
without the microsecond component. Only two values are allowed:

e 0: Only use those materialized query tables defined refresh immediate.
e 99,999,999,999,999: Use al valid materialized query tables (same as ANY).

Below isthe SET command in action:

Figure 620, Refresh age command, syntax

SET CURRENT REFRESH AGE 0;
SET CURRENT REFRESH AGE ANY;
SET CURRENT REFRESH AGE 99999999999999;

Figure 621, Set refresh age command
One can select the CURRENT REFRESH AGE special register to see what the valueis:

SELECT CURRENT REFRESH AGE AS age ts
, CURRENT TIMESTAMP AS current_ts
FROM sysibm. sysdummyl;

Figure 622, Selecting refresh age

One can aso query the DB2 catalogue to get list of all materialized query tables, and what
their refresh option is:

220 Usage Notes

DB2 UDB/V8.1 Cookbook ©

SELECT CHAR (tabschema,10) AS schema
, CHAR (tabname, 20) AS table
. type
,refresh
,refresh time
,card AS #rows
,DATE (create_time) AS create_dt
,DATE (stats_time) AS stats_dt
FROM syscat.tables
WHERE type = 'S’
ORDER BY 1,2;

Figure 623, List all materialized query tables

Refresh Immediate Tables

A materialized query table defined REFRESH IMMEDIATE is automatically maintained in
sync with the source table by DB2. Aswith any materialized query table, it is defined by re-
ferring to aquery. Below isatable that refersto a single source table:

CREATE TABLE emp_summary AS
(SELECT emp . workdept

, COUNT (*) AS num_rows

, COUNT (emp.salary) AS num salary

,SUM (emp.salary) AS sum_salary

, COUNT (emp . comm) AS num_comm

, SUM (emp . comm) AS sum_comm
FROM employee emp

GROUP BY emp.workdept
)DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

Figure 624, Refresh immediate materialized query table DDL
Below isaquery that can use the above materialized query table in place of the base table:

SELECT emp .workdept

,DEC (SUM (emp .salary),8,2) AS sum_sal
,DEC (AVG (emp.salary),7,2) AS avg_sal
, SMALLINT (COUNT (emp.comm)) AS #comms
, SMALLINT (COUNT (*)) AS #emps

FROM employee emp

WHERE emp . workdept > 'C’

GROUP BY emp.workdept

HAVING COUNT (*) <> 5

AND SUM (emp.salary) > 50000
ORDER BY sum_sal DESC;

Figure 625, Query that uses materialized query table (1 of 3)

The next query can also use the materialized query table. Thistime, the data returned from the
materialized query table is qualified by checking against a sub-query:

SELECT emp . workdept

, COUNT (*) AS #rows
FROM employee emp
WHERE emp .workdept IN

(SELECT deptno

FROM department

WHERE deptname LIKE ’'%S%')
GROUP BY emp.workdept
HAVING SUM (salary) > 50000;

Figure 626, Query that uses materialized query table (2 of 3)

This last example uses the materialized query table in a nested table expression:

Materialized Query Tables 221

Graeme Birchall ©

SELECT #emps

,DEC (SUM (sum_sal),9,2) AS sal sal
, SMALLINT (COUNT (*)) AS #depts
FROM (SELECT emp . workdept

,DEC (SUM (emp.salary),8,2) AS sum_sal
,MAX (emp.salary) AS max_sal
, SMALLINT (COUNT (*)) AS #emps

FROM employee emp

GROUP BY emp.workdept

)AS XXX

GROUP BY #emps

HAVING COUNT (*) > 1
ORDER BY #emps

FETCH FIRST 3 ROWS ONLY
OPTIMIZE FOR 3 ROWS;

Figure 627, Query that uses materialized query table (3 of 3)
Queries that don’t use Materialized Query Table

Below is aquery that can not use the EMP_SUMMARY table because of the reference to the
MAX function. Ironically, this query is exactly the same as the nested table expression above,
but in the prior example the MAX isignored because it is never actually selected:

SELECT emp . workdept

,DEC (SUM (emp.salary),8,2) AS sum_sal
,MAX (emp.salary) AS max_sal
FROM employee emp

GROUP BY emp.workdept;
Figure 628, Query that doesn’t use materialized query table (1 of 2)

The following query can't use the materialized query table because of the DISTINCT clause:

SELECT emp . workdept

,DEC (SUM (emp .salary), 8,2) AS sum_sal
, COUNT (DISTINCT salary) AS #salaries
FROM employee emp

GROUP BY emp.workdept;
Figure 629, Query that doesn’t use materialized query table (2 of 2)

Usage Notes and Restrictions

o A materialized query table must be refreshed before it can be queried. If the tableisde-
fined refresh immediate, then the table will be maintained automatically after the initial
refresh.

e Make sureto commit after doing a refresh. The refresh does not have an implied commit.
e Run RUNSTATS &fter refreshing a materialized query table.

e One can not load datainto materialized query tables.

e One can not directly update materialized query tables.

To refresh amaterialized query table, use either of the following commands:

REFRESH TABLE emp summary;
COMMIT;

SET INTEGRITY FOR emp summary iMMEDIATE CHECKED;
COMMIT;

Figure 630, Materialized query table refresh commands

222 Usage Notes

DB2 UDB/V8.1 Cookbook ©

Multi-table Materialized Query Tables

Single-table materialized query tables save having to look at individual rowsto resolve a
GROUP BY. Multi-table materiaized query tables do this, and also avoid having to resolve a
join.

CREATE TABLE dept emp summary AS

(SELECT emp . workdept
,dpt .deptname

, COUNT (*) AS num_rows
, COUNT (emp.salary) AS num salary
,SUM (emp.salary) AS sum_salary
, COUNT (emp . comm) AS num_comm
, SUM (emp . comm) AS sum_comm
FROM employee emp
,department dpt
WHERE dpt .deptno = emp.workdept

GROUP BY emp.workdept
,dpt .deptname
)DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

Figure 631, Multi-table materialized query table DDL
The following query is resolved using the above materialized query table:

SELECT d.deptname

,d.deptno
,DEC (AVG (e.salary),7,2) AS avg_sal
, SMALLINT (COUNT (*)) AS #emps
FROM department d
,employee e
WHERE e.workdept = d.deptno
AND d.deptname LIKE ’%S%’
GROUP BY d.deptname
,d.deptno
HAVING SUM (e . comm) > 4000

ORDER BY avg_sal DESC;
Figure 632, Query that uses materialized query table

Here isthe SQL that DB2 generated internally to get the answer:

SELECT Q2.$C0 AS "deptname"
,Q02.3$C1 AS "deptno"
,Q2.5C2 AS "avg_sal"
,Q02.$C3 AS "#emps"

FROM (SELECT Ql.deptname AS $CO
, Q1 .workdept AS $C1
,DEC((Ql.sum_salary / Ql.num_salary),7,2) AS $C2
, SMALLINT (Q1l.num_rows) AS $C3

FROM dept_emp summary AS Q1

WHERE (Q1.deptname LIKE ’%S%’)
AND (4000 < Q1.sum comm)

)AS Q2

ORDER BY Q2.3$C2 DESC;
Figure 633, DB2 generated query to use materialized query table

Rules and Restrictions

e Thejoin must be an inner join, and it must be written in the old style syntax.
o Every table accessed in the join (except one?) must have a unique index.

e Thejoin must not be a Cartesian product.

e TheGROUPBY must include al of the fields that define the unique key for every table
(except one?) inthejoain.

Materialized Query Tables 223

Graeme Birchall ©

Three-table Example

CREATE TABLE dpt emp_ act sumry AS
(SELECT emp . workdept
,dpt .deptname
, emp . empno
,emp.firstnme

,SUM (act .emptime) AS sum_time
, COUNT (act .emptime) AS num time
, COUNT (*) AS NUM_ROWS

FROM department dpt
,employee emp
,emp_act act

WHERE dpt .deptno = emp.workdept

AND emp.empno = act.empno

GROUP BY emp.workdept
,dpt .deptname
, emp . empno
,emp.firstnme
)DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

Figure 634, Three-table materialized query table DDL

Now for aquery that will use the above:

SELECT d.deptno
,d.deptname
,DEC(AVG (a.emptime),5,2) AS avg time

FROM department d
,employee e
,emp_act a
WHERE d.deptno = e.workdept
AND e.empno = a.empno
AND d.deptname LIKE ’%S%’
AND e.firstnme LIKE ’%S%’

GROUP BY d.deptno
,d.deptname
ORDER BY 3 DESC;

Figure 635, Query that uses materialized query table

And hereisthe DB2 generated SQL :

SELECT Q4.3$C0 AS "deptno"
,Q4.5C1 AS "deptname"
,04.5C2 AS "avg time"

FROM (SELECT Q3.$C3 AS $CO
,03.8C2 AS s$SC1
,DEC((Q3.3C1 / Q3.3C0),5,2) AS sC2
FROM (SELECT SUM (Q2.5C2) AS S$CO
,SUM (Q2.5C3) AS S$C1
,02.8C0 AS s$C2
,Q2.8C1 AS $C3
FROM (SELECT Q1l.deptname AS $SCO
, Q1 .workdept AS $C1
,Ql.num_time AS $C2
,Ql.sum_time AS $C3
FROM dpt _emp act sumry AS Q1
WHERE (Ql.firstnme LIKE ’%S%’)
AND (Q1.DEPTNAME LIKE ’'%S%’)
)AS Q2
GROUP BY Q2.$C1
,Q02.5C0
)AS Q3
)AS Q4

ORDER BY Q4.$C2 DESC;
Figure 636, DB2 generated query to use materialized query table

224 Usage Notes

DB2 UDB/V8.1 Cookbook ©

Indexes on Materialized Query Tables

To really make things fly, one can add indexes to the materialized query table columns. DB2

will then use these indexes to locate the required data. Certain restrictions apply:

e Uniqueindexes are not allowed.

e Thematerialized query table must not bein a*check pending" status when theindex is

defined. Run arefresh to address this problem.

Below are some indexes for the DPT_EMP_ACT_SUMRY table that was defined above:

CREATE INDEX dpt_emp_act_sumxl
ON dpt emp act sumry
(workdept
, deptname
, empno
,firstnme) ;

CREATE INDEX dpt emp act sumx2
ON dpt_emp act_ sumry
(num_rows) ;

Figure 637, Indexes for DPT_EMP_ACT_SUMRY materialized query table table

The next query will use the first index (i.e. on WORKDEPT):

SELECT d.deptno
,d.deptname
, €.empno
,e.firstnme
, INT (AVG (a.emptime)) AS avg time

FROM department d
,employee e
,emp_act a
WHERE d.deptno = e.workdept
AND . empno = a.empno

e
AND d.deptno LIKE ’'D%’
GROUP BY d.deptno
,d.deptname
, €.empno
,e.firstnme
ORDER BY 1,2,3,4;

Figure 638, Sample query that use WORKDEPT index

The next query will use the second index (i.e. on NUM_ROWS):

SELECT d.deptno

,d.deptname

, €.empno

,e.firstnme

, COUNT (*) AS #acts
FROM department

,employee

,emp_act
WHERE d.deptno

AND e.empno

GROUP BY d.deptno

,d.deptname

, €.empno

,e.firstnme
HAVING COUNT(*) > 4
ORDER BY 1,2,3,4;

Figure 639, Sample query that uses NUM_ROWS index

oo

e.workdept
a.empno

Materialized Query Tables

225

Graeme Birchall ©

Organizing by Dimensions

The following materialized query table is organized (clustered) by the two columns that are
referred to in the GROUP BY . Under the covers, DB2 will also create adimension index on
each column, and a block index on both columns combined:

CREATE TABLE emp_ sum AS
(SELECT workdept

, job
, SUM (salary) AS sum_sal
, COUNT (*) AS #emps
, GROUPING (workdept) AS grp_ dpt
, GROUPING (job) AS grp_job
FROM employee
GROUP BY CUBE (workdept

,job))
DATA INITIALLY DEFERRED REFRESH DEFERRED
ORGANIZE BY DIMENSIONS (workdept, job)
IN tsempsum;

Figure 640, Materialized query table organized by dimensions

WARNING: Multi-dimensional tables may perform very poorly when created in the default
tablespace, or in a system-maintained tablespace. Use a database-maintained tablespace
with the right extent size, and/or run the DB2EMPFA command.

Don't forget to run RUNSTATS!

Using Staging Tables

A staging table can be used to incrementally maintain a materialized query table that has been
defined refresh deferred. Using a staging table can result in a significant performance saving
(during the refresh) if the source table is very large, and is not changed very often.

NOTE: To use a staging table, the SQL statement used to define the target materialized query
table must follow the rules that apply for atable that is defined refresh immediate - even
though it is defined refresh deferred.

The staging table CREATE statement has the following components:
e Thename of the staging table.

o Alist of columns (with no attributes) in the target materialized query table. The column
names do not have to match those in the target table.

e FEither two or three additional columns with specific names- as provided by DB2.
e Thename of the target materialized query table.
Toillustrate, below isatypical materialized query table:

CREATE TABLE emp_ sumry AS

(SELECT workdept AS dept
, COUNT (*) AS #rows
, COUNT (salary) AS #sal
,SUM (salary) AS sum_sal
FROM employee emp

GROUP BY emp.workdept
)DATA INITIALLY DEFERRED REFRESH DEFERRED;

Figure 641, Sample materialized query table
Here is a staging table for the above:

226 Usage Notes

DB2 UDB/V8.1 Cookbook ©

CREATE TABLE emp_ sumry_ s
(dept
,IUM_TXOows
,num_sal
,sum_sal
, GLOBALTRANSID
, GLOBALTRANSTIME
) FOR emp_sumry PROPAGATE IMMEDIATE;

Figure 642, Saging table for the above materialized query table
Additional Columns

Thetwo, or three, additional columns that every staging table must have are as follows:
e GLOBALTRANSID: Thegloba transaction ID for each propagated row.
o GLOBALTRANSTIME: The transaction timestamp

o OPERATIONTY PE: The operation type (i.e. insert, update, or delete). Thiscolumnis
needed if the target materialized query table does not contain a GROUP BY statement.

Using a Staging Table

To activate the staging table one must first use the SET INTEGRITY command to remove the

check pending flag, and then do afull refresh of the target materialized query table. After this
is done, the staging table will record all changes to the source table.

Use the refresh incremental command to apply the changes recorded in the staging table to
the target materialized query table.

SET INTEGRITY FOR emp_ sumry s STAGING IMMEDIATE UNCHECKED;
REFRESH TABLE emp_ sumry;

<< make changes to the source table (i.e. employee) >>

REFRESH TABLE emp sumry INCREMENTAL;
Figure 643, Enabling and the using a staging table

e A multi-row update (or insert, or delete) uses the same CURRENT TIMESTAMP for all
rows changed, and for all invoked triggers. Therefore, the #CHANGING_SQL field is
only incremented when a hew timestamp value is detected.

Materialized Query Tables 227

Graeme Birchall ©

228 Usage Notes

DB2 UDB/V8.1 Cookbook ©

ldentity Columns and Sequences

Imagine that one has an INV OICE table that records invoices generated. Also imagine that
one wants every new invoice that goesinto this table to get an invoice number value that is
part of a unique and unbroken sequence of ascending values - assigned in the order that the
invoices are generated. So if the highest invoice number is currently 12345, then the next in-
voice will get 12346, and then 12347, and so on.

There is aimost never avalid business reason for requiring such an unbroken sequence of val-
ues. Regardless, some people want this feature, and it can, up to a point, be implemented in
DB2. In this chapter we will describe how to do it.

Identity Columns

One can define acolumn in a DB2 table as an "identity column". This column, which must be
numeric (note: fractional fields not allowed), will be incremented by a fixed constant each
time anew row isinserted. Below is a syntax diagram for that part of a CREATE TABLE
statement that refers to an identity column definition:

F column name {
L GENERATED ALWAYS }
T BY DEFAULT

17—
(—_ START WITH numeric constant) J
1
| INCREMENT BY num

NO MINVALUE
I 1

MINVALUE ——— numeric constant

data type

FAS IDENTITY t

FNO MAXVALUE ‘
I~ MAXVALUE

numeric constant

NO CYCLE

ECYCLE j

CACHE20 ——
JE NO CACHE

CACHE integer constant
NO ORDER

JjORDER j

Figure 644, Identity Column syntax

Identity Columns and Sequences 229

Graeme Birchall ©

Below is an example of atypical invoice table that uses an identity column that starts at one,
and then goes ever upwards:

CREATE TABLE INVOICE DATA
(INVOICE# INTEGER NOT NULL
GENERATED ALWAYS AS IDENTITY
(START WITH 1
, INCREMENT BY 1
,NO MAXVALUE

,NO CYCLE

, ORDER)
, SALE_DATE DATE NOT NULL
, CUSTOMER_ID CHAR (20) NOT NULL
, PRODUCT ID INTEGER NOT NULL
, QUANTITY INTEGER NOT NULL
,PRICE DECIMAL(18,2) NOT NULL
,PRIMARY KEY (INVOICE#)) ;

Figure 645, Identity column, sample table

Rules and Restrictions
Identity columns come in one of two general flavors:
e Thevaueisawaysgenerated by DB2.

e Thevaueisgenerated by DB2 only if the user does not provide avalue (i.e. by default).
This configuration is typically used when the input is coming from an external source
(e.g. data propagation).

Rules
e There can only be oneidentity column per table.
o Thefield cannot be updated if it is defined "generated always".

e The column type must be numeric and must not allow fractional values. Any integer type
isOK. Decimal isalso fine, aslong asthe scaleis zero. Floating point is a no-no.

e Theidentity column value is generated before any BEFORE triggers are applied. Usea
trigger transition variable to see the value.

e A uniqueindex is not required on the identity column, but it isagood idea. Certainly, if
the value is being created by DB2, then a non-unique index is afairly stupid idea.

o Unliketriggers, identity column logic isinvoked and used during aLOAD. However, a
load-replace will not reset the identity column value. Use the RESTART command (see
below) to do this. Anidentity column is not affected by a REORG.

Syntax Notes

e START WITH defines the start value, which can be any valid integer value. If no start
value is provided, then the default isthe MINVALUE for ascending sequences, and the
MAXVALUE for descending sequences. If thisvalue is also not provided, then the de-
faultis 1.

e INCREMENT BY definestheinterval between consecutive values. This can be any valid
integer value, though using zero is pretty silly. The default is 1.

e MINVALUE defines (for ascending sequences) the value that the sequence will start at if
no start value is provided. It is aso the value that an ascending sequence will begin again
at after it reaches the maximum and loops around. If no minimum value is provided, then

230 Identity Columns

DB2 UDB/V8.1 Cookbook ©

after reaching the maximum the sequence will begin again at the start value. If that is aso
not defined, then the sequence will begin again at 1, which is the default start value.

e For descending sequences, it is the minimum value that will be used before the sequence
loops around, and starts again at the maximum value.

o MAXVALUE defines (for ascending sequences) the value that a sequence will stop at,
and then go back to the minimum value. For descending sequences, it isthe start value (if
no start value is provided), and also the restart value - if the sequence reaches the mini-
mum and loops around.

e CYCLE defines whether the sequence should cycle about when it reaches the maximum
value (for an ascending sequences), or whether it should stop. The default is no cycle.

e CACHE defines whether or not to allocate sequences values in chunks, and thus to save
on log writes. The default is no cache, which means that every row inserted causes alog
write (to save the current value).

o |f acachevaue (from 2 to 20) is provided, then the new values are assigned to a common
pool in blocks. Each insert user takes from the pool, and only when all of the values are
used is anew block (of values) allocated and alog write done. If the table is deactivated,
either normally or otherwise, then the valuesin the current block are discarded, resulting
in gaps in the sequence. Gaps in the sequence of values also occur when an insert is sub-
sequently rolled back, so they cannot be avoided. But don't use the cache if you want to
try and avoid them.

o ORDER defines whether all new rows inserted are assigned a sequence number in the
order that they were inserted. The default is no, which means that occasionally arow that
isinserted after another may get a slightly lower sequence number. Thisis the default.

Sequence Examples

The following example uses all of the defaults to start a sequence at one, and thento goup in
increments of one. Theinserts will finally die when they reach the maximum allowed value
for the field type (i.e. for small integer = 32K).

CREATE TABLE TEST_DATA KEY# FIELD - VALUES ASSIGNED
(KEY# SMALLINT NOT NULL ============================
GENERATED ALWAYS AS IDENTITY 123456 789 10 11 etc.

,DAT1 SMALLINT NOT NULL
, TS1 TIMESTAMP NOT NULL
, PRIMARY KEY (KEY#)) ;

Figure 646, Identity column, ascending sequence

The next exampl e defines a sequence that goes down in increments of -3:

CREATE TABLE TEST DATA KEY# FIELD - VALUES ASSIGNED
(KEY# SMALLINT NOT NULL —===========================
GENERATED ALWAYS AS IDENTITY 6 30 -3 -6 -9 -12 -15 etc.
(START WITH 6
, INCREMENT BY -3
,NO CYCLE
,NO CACHE
, ORDER)
,DAT1 SMALLINT NOT NULL
,TS1 TIMESTAMP NOT NULL
,PRIMARY KEY (KEY#)) ;

Figure 647, Identity column, descending sequence

Identity Columns and Sequences 231

Graeme Birchall ©

The next example, which is amazingly stupid, goes nowhere fast. A primary key cannot be
defined on thistable:

CREATE TABLE TEST DATA KEY# VALUES ASSIGNED
(KEY# SMALLINT NOT NULL —===========================
GENERATED ALWAYS AS IDENTITY 123 123 123 123 123 123 etc.
(START WITH 123
, MAXVALUE 124
, INCREMENT BY 0
,NO CYCLE
,NO ORDER)

,DAT1 SMALLINT NOT NULL
, TS1 TIMESTAMP NOT NULL) ;

Figure 648, Identity column, dumb sequence

The next example uses every odd number up to the maximum (i.e. 6), then loops back to the
minimum value, and goes through the even numbers, ad-infinitum:

CREATE TABLE TEST DATA KEY# VALUES ASSIGNED
(KEY# SMALLINT NOT NULL —===========================
GENERATED ALWAYS AS IDENTITY 135246246246 etc.
(START WITH 1
, INCREMENT BY 2
, MAXVALUE 6
,MINVALUE 2
,CYCLE
,NO CACHE
, ORDER)
,DAT1 SMALLINT NOT NULL
,TS1 TIMESTAMP NOT NULL) ;

Figure 649, Identity column, odd values, then even, then stuck
Usage Examples

Below isthe DDL for asimplified invoice table where the primary key is an identity column.
Observe that the invoicet# is aways generated by DB2:

CREATE TABLE INVOICE DATA
(INVOICE# INTEGER NOT NULL
GENERATED ALWAYS AS IDENTITY
(START WITH 100
, INCREMENT BY 1

,NO CYCLE

, ORDER)
, SALE_DATE DATE NOT NULL
, CUSTOMER_ID CHAR (20) NOT NULL
, PRODUCT ID INTEGER NOT NULL
, QUANTITY INTEGER NOT NULL
,PRICE DECIMAL(18,2) NOT NULL
,PRIMARY KEY (INVOICE#)) ;

Figure 650, Identity column, definition

One cannot provide an input value for the invoice# when inserting into the above table.
Therefore, one must either use a default placeholder, or leave the column out of the insert. An
example of both techniquesis given below:

INSERT INTO INVOICE_ DATA
VALUES (DEFAULT,’'2001-11-22’,'ABC’,123,100,10);

INSERT INTO INVOICE DATA
(SALE_DATE,CUSTOMER_ID,PRODUCT_ID,QUANTITY,PRICE)
VALUES (’2001-11-23’,'DEF’,123,100,10);

Figure 651, Invoice table, sample inserts

Below isthe state of the table after the above two inserts:

232 Identity Columns

DB2 UDB/V8.1 Cookbook ©

INVOICE# SALE DATE CUSTOMER_ID PRODUCT 1D
100 11/22/2001 ABC 123
101 11/23/2001 DEF 123

Figure 652, Invoice table, after inserts

Altering Identity Column Options

QUANTITY

PRICE

Imagine that the application is happily collecting invoices in the above table, but your silly
boss is unhappy because not enough invoices, as measured by the ever-ascending invoi cet
value, are being generated per unit of time. We can improve things without actually fixing

any difficult business problems by simply altering the invoice# current value and the incre-

ment using the ALTER TABLE ... RESTART command:

ALTER TABLE INVOICE_DATA
ALTER COLUMN INVOICE#
RESTART WITH 1000
SET INCREMENT BY 2;

Figure 653, Invoice table, restart identity column value

Now imagine that we insert two more rows thus:

INSERT INTO INVOICE DATA
VALUES (DEFAULT,'2001-11-24','XXX’',123,100,10)
, (DEFAULT, '2001-11-25",'YYY’,123,100,10) ;

Figure 654, Invoice table, more sample inserts

Our mindless management will now see this data:

INVOICE# SALE_DATE CUSTOMER_ID PRODUCT_ID
100 11/22/2001 ABC 123

101 11/23/2001 DEF 123

1000 11/24/2001 XXX 123
1002 11/25/2001 YYY 123

Figure 655, Invoice table, after second inserts

Alter Usage Notes

QUANTITY

Asthe following diagram shows, all of the identity column options can be changed using the

ALTER TABLE command:

’ _ RESTART
L numeric constantJ

| SET INCREMENT BY __ numeric constant
I SET NO MINVALUE

[MINVALUE — numeric constantJ

——SET NO MAXVALUE

MAXVALUE — numeric constantJ

— SET NO CYCLE
[CYCLE Q
L SET NO ORDER

—[ORDERQ

Figure 656, Identity Column alter syntax

Identity Columns and Sequences

<

233

Graeme Birchall ©

Restarting the identity column start number to alower number, or to a higher number if the
increment is a negative value, can result in the column getting duplicate values. This can also
occur if the increment value is changed from positive to negative, or vice-versa. If no valueis
provided for the restart option, the sequence restarts at the previously defined start value.

Gaps in the Sequence

If an identity column is generated always, and no cacheis used, and the increment valueis 1,
then there will usually be no gaps in the sequence of assigned values. But gaps can occur if an
insert is subsequently rolled out instead of being committed. Below is an illustration of this
problem:

CREATE TABLE CUSTOMERS

(CUST# INTEGER NOT NULL
GENERATED ALWAYS AS IDENTITY (NO CACHE)

, CNAME CHAR (10) NOT NULL

,CTYPE CHAR (03) NOT NULL

, PRIMARY KEY (CUSTH#)) ;

COMMIT;

INSERT INTO CUSTOMERS
VALUES (DEFAULT, 'FRED’,’'XXX');

SELECT * <<< ANSWER

FROM CUSTOMERS —==================
ORDER BY 1; CUST# CNAME CTYPE
ROLLBACK; 1 FRED XXX

INSERT INTO CUSTOMERS
VALUES (DEFAULT, 'FRED’,’'XXX');

SELECT * <<< ANSWER

FROM CUSTOMERS —==================
ORDER BY 1; CUST# CNAME CTYPE
COMMIT; 2 FRED XXX

Figure 657, Overriding the default identity value

One advantage of DB2's identity column implementation is that the value allocation process
isnot apoint of contention in the table. Subsequent users do not have to wait for the first user
to do a commit before they can insert their own rows.

Roll Your Own - no Gaps in Sequence

If oneredlly, really, needs to have a sequence of values with no gaps, then one can do it using
atrigger, but there are costs, in processing time, concurrency, and functionality. To illustrate
how to do it, consider the following table:

CREATE TABLE SALES INVOICE

(INVOICE# INTEGER NOT NULL
,SALE_DATE DATE NOT NULL
, CUSTOMER_ID CHAR (20) NOT NULL
, PRODUCT_ID INTEGER NOT NULL
, QUANTITY INTEGER NOT NULL
, PRICE DECIMAL(18,2) NOT NULL
, PRIMARY KEY (INVOICE#)) ;

Figure 658, Sample table, roll your own sequence#

234 Identity Columns

DB2 UDB/V8.1 Cookbook ©

The following trigger will be invoked before each row isinserted into the above table. It sets
the new invoice# value to be the current highest invoicet value in the table, plus one:
CREATE TRIGGER SALES INSERT
NO CASCADE BEFORE
INSERT ON SALES INVOICE
REFERENCING NEW AS NNN
FOR EACH ROW
MODE DB2SQL
SET NNN.INVOICE# =
(SELECT COALESCE (MAX (INVOICE#),0) + 1
FROM SALES INVOICE) ;

Figure 659, Sample trigger, roll your own sequence#

The good news about the above setup is that it will never result in gaps in the sequence of
values. In particular, if anewly inserted row is rolled back after the insert is done, the next
insert will simply use the same invoice# value. But thereis also bad news:

e Only one user can insert at atime, because the select (in the trigger) needs to see the
highest invoicet in the table in order to complete.

e Multiple rows cannot be inserted in asingle SQL statement (i.e. amassinsert). Thetrig-
ger isinvoked before the rows are actually inserted, one row at atime, for al rows. Each
row would see the same, already existing, high invoice#, so the whole insert would die
due to aduplicate row violation.

e There may be atiny, tiny chance that if two users were to begin an insert at exactly the
same time that they would both see the same high invoice# (in the before trigger), and so
the last one to complete (i.e. to add a pointer to the unique invoice# index) would get a
duplicate-row violation.

Below are some inserts to the above table. Ignore the values provided in thefirst field - they
arereplaced in the trigger. And observe that the third insert isrolled out:
INSERT INTO SALES INVOICE VALUES (0,’2001-06-22',’ABC’,123,10,1);

INSERT INTO SALES:INVOICE VALUES (0,’2001-06-23','DEF’,453,10,1);
COMMIT;

INSERT INTO SALES INVOICE VALUES (0,’2001-06-24','XXX’,888,10,1);
ROLLBACK;

INSERT INTO SALES INVOICE VALUES (0,’2001-06-25',’'YYY’,999,10,1);
COMMIT;

1 06/22/2001 ABC 123 10 1.00
2 06/23/2001 DEF 453 10 1.00
3 06/25/2001 YYY 999 10 1.00

Figure 660, Sample inserts, roll your own sequence#

IDENTITY_VAL_LOCAL Function

Imagine that one has just inserted arow, and one now wants to find out what value DB2 gave
the identity column. One callsthe IDENTITY _VAL_LOCAL function to find out. The result
isadecima (31.0) field. Certain rules apply:

e Thefunction returns null if the user has not done a single-row insert in the current unit of
work. Therefore, the function has to be invoked before one does a commit. Having said
this, in some versions of DB2 it seems to work fine after a commit.

Identity Columns and Sequences 235

Graeme Birchall ©

o |f the user inserts multiple rows into table(s) having identity columnsin the same unit of
work, the result will be the value obtained from the last single-row insert. The result will
be null if there was none.

e Multiple-row inserts are ignored by the function. So if the user first inserts one row, and
then separately inserts two rows (in asingle SQL statement), the function will return the
identity column value generated during the first insert.

e Thefunction cannot be called in atrigger or SQL function. To get the current identity
column value in an insert trigger, use the trigger transition variable for the column. The
value, and thus the transition variable, is defined before the trigger is begun.

o If invoked inside an insert statement (i.e. as an input value), the value will be taken from
the most recent (previous) single-row insert done in the same unit of work. The result will
be null if there was none.

e Thevaue returned by the function is unpredictable if the prior single-row insert failed. It
may be the value from the insert before, or it may be the value given to the failed insert.

e Thefunction is non-deterministic, which means that the result is determined at fetch time
(i.e. not at open) when used in acursor. So if one fetches arow from a cursor, and then
does an insert, the next fetch may get a different value from the prior.

e Thevauereturned by the function may not equal the value in the table - if either atrigger
or an update has changed the field since the value was generated. This can only occur if
the identity column is defined as being "generated by default”. Anidentity column that is
"generated always' cannot be updated.

o When multiple users are inserting into the same table concurrently, each will see their
own most recent identity column value. They cannot see each other’s.

Below are two examples of the function in use. Observe that the second invocation (done af -
ter the commit) returned a value, even though it is supposed to return null:

CREATE TABLE INVOICE TABLE

(INVOICE# INTEGER NOT NULL
GENERATED ALWAYS AS IDENTITY

,SALE_DATE DATE NOT NULL
, CUSTOMER_ID CHAR(20) NOT NULL
, PRODUCT _ID INTEGER NOT NULL
, QUANTITY INTEGER NOT NULL
, PRICE DECIMAL(18,2) NOT NULL
, PRIMARY KEY (INVOICE#)) ;

COMMIT;

INSERT INTO INVOICE TABLE
VALUES (DEFAULT,'2000-11-22',’ABC’,123,100,10);

WITH TEMP (ID) AS <<< ANSWER
(VALUES (IDENTITY_ VAL LOCAL())) ======
SELECT * ID

FROM TEMP; -—--

COMMIT;

WITH TEMP (ID) AS <<< ANSWER
(VALUES (IDENTITY VAL LOCAL())) ======
SELECT * ID

FROM TEMP; ----

Figure 661, IDENTITY_VAL_LOCAL function examples

236 Identity Columns

DB2 UDB/V8.1 Cookbook ©

In the next example, two separate inserts are done on the table defined above. The first inserts
asingle row, and so sets the function value to "2". The second is a multi-row insert, and so is
ignored by the function:

INSERT INTO INVOICE TABLE
VALUES (DEFAULT,’2000-11-23’,'ABC’,123,100,10);

INSERT INTO INVOICE TABLE
VALUES (DEFAULT, '2000-11-24','ABC’,123,100,10)

, (DEFAULT, '2000-11-25’,'ABC’,123,100,10) ; ANSWER
SELECT INVOICE# AS INV# INV# SALE DATE 1ID
,SALE_DATE = mmmmm——— - --
, IDENTITY VAL LOCAL() AS ID 1 11/22/2000 2
FROM INVOICE_ TABLE 2 11/23/2000 2
ORDER BY 1; 3 11/24/2000 2
COMMIT; 4 11/25/2000 2

Figure 662, IDENTITY_VAL_LOCAL function examples

One can also use the function to get the most recently inserted single row:

SELECT INVOICE# AS INV# ANSWER
, SALE_DATE R L TTEEEEEEAe
, IDENTITY VAL LOCAL() AS ID INV# SALE DATE ID
FROM INVOICE TABLE R R R --
WHERE ID = IDENTITY VAL LOCAL() ; 2 11/23/2000 2

Figure 663, IDENTITY_VAL_LOCAL usage in predicate

__|]
Sequences

A sequence is amost the same as an identity column, except that it is an object that exists
outside of any particular table.

CREATE SEQUENCE FRED SEQ# VALUES ASSIGNED
AS DECIMAL(31) ====================
START WITH 100 100 102 104 106 etc.

INCREMENT BY 2
NO MINVALUE
NO MAXVALUE
NO CYCLE
CACHE 20
ORDER ;

Figure 664, Create sequence

The options and defaults for a sequence are exactly the same as those for an identity column
(see page 230). Likewise, one can ater a sequence in much the same way as one would alter
the status of an identity column:

ALTER SEQUENCE FRED SEQ# VALUES ASSIGNED
RESTART WITH -55 ====================
INCREMENT BY -5 -55 -60 -65 -70 etc.
MINVALUE -1000
MAXVALUE +1000
NO CACHE
NO ORDER
CYCLE;

Figure 665, Alter sequence attributes

The only sequence attribute that one cannot change with the ALTER command is the field
type that is used to hold the current value.

Identity Columns and Sequences 237

Graeme Birchall ©

Getting the Sequence Value

There is no concept of a current sequence value. Instead one can either retrieve the next or the
previous value (if there is one). And any reference to the next value will invariably cause the
sequence to be incremented. The following example illustrates this:

CREATE SEQUENCE FRED; ANSWER
COMMIT; —=—===

SEQ#
WITH TEMP1 (N1) AS -
(VALUES 1 1
UNION ALL 2
SELECT N1 + 1 3
FROM TEMP1 4
WHERE N1 < 5 5

)
SELECT NEXTVAL FOR FRED AS SEQ#
FROM TEMP1;

Figure 666, Selecting the NEXTVAL

Rules and Restrictions

o One retrieves the next or previous value using a"NEXTVAL FOR sequence-name”, or a
"PREVVAL for sequence-name" call.

o A NEXTVAL cal generates and returns the next value in the sequence. Thus, each call
will consume the returned value, and this remains true even if the statement that did the
retrieval subsequently fails or is rolled back.

e A PREVVAL cal returns the most recently generated value for the specified sequence
for the current connection. Unlike when getting the next value, getting the prior value
does not alter the state of the sequence, so multiple calls can retrieve the same value. If
no NEXTVAL reference (to the target sequence) has been made for the current connec-
tion, any attempt to get the prior will result in a SQL error.

e TheNEXTVAL and PREVVAL can be used in the following statements:

e SELECT INTO statement (within the select clause), aslong asthereisno DISTINCT,
GROUPBY, UNION, EXECPT, or INTERSECT.

e INSERT statement - with restrictions.

o UPDATE statement - with restrictions.

e SET host variable statement.

e TheNEXTVAL can beused in atrigger, but the PREVVAL cannot.

e TheNEXTVAL and PREVVAL cannot be used in the following statements:
e Join condition of afull outer join.

e Anywherein aCREATE TABLE or CREATE VIEW statement.

e TheNEXTVAL cannot be used in the following statements:

o CASE expression

e Join condition of ajoin.

e Parameter list of an aggregate function.

238 Sequences

DB2 UDB/V8.1 Cookbook ©

e SELECT statement where there is an outer select that contains a DISTINCT, GROUP

BY, UNION, EXCEPT, or INTERSECT.

e Most sub-queries.

There are many more usage restrictions, but you presumably get the picture. See the DB2

SQL Reference for the complete list.

Usage Examples

Below a sequence is defined, then various next and previous values are retrieved:

CREATE SEQUENCE FRED;
COMMIT;

WITH TEMP1 (PRV) AS ===>

(VALUES (PREVVAL FOR FRED))
SELECT *
FROM TEMP1;

WITH TEMP1 (NXT) AS ===>

(VALUES (NEXTVAL FOR FRED))
SELECT *
FROM TEMP1;

WITH TEMP1 (PRV) AS ===>

(VALUES (PREVVAL FOR FRED))
SELECT *
FROM TEMP1;

WITH TEMP1 (N1) AS ===>

(VALUES 1

UNION ALL

SELECT N1 + 1

FROM TEMP1

WHERE N1 < 5

)

SELECT NEXTVAL FOR FRED AS NXT
,PREVVAL FOR FRED AS PRV

FROM TEMP1 ;

Figure 667, Use of NEXTVAL and PREVVAL expressions

ANSWERS

PRV

<error>

NXT

PRV

NXT PRV

U W
PR

One does not actually have to fetch aNEXTVAL result in order to increment the underlying
seguence. In the next example, some of the rows processed are thrown away halfway thru the

query, but their usage still affects the answer (of the subsequent query):

CREATE SEQUENCE FRED;
COMMIT;

WITH TEMP1 AS ===>

(SELECT ID
,NEXTVAL FOR FRED AS NXT

FROM STAFF

WHERE ID < 100

)
SELECT *
FROM TEMP1
WHERE ID = 50;

WITH TEMP1l (NXT, PRV) AS ===>

(VALUES (NEXTVAL FOR FRED

, PREVVAL FOR FRED))
SELECT *
FROM TEMP1;

Figure 668, NEXTVAL values used but not retrieved

Identity Columns and Sequences

ANSWERS

NXT PRV

10 9

239

Graeme Birchall ©

Multi-table Usage

Imagine that one wanted to maintain a unigque sequence of values over multiple tables. One
can do this by creating a before insert trigger on each table that replaces whatever value the
user provides with the current one from a common segquence. Below is an example:
CREATE SEQUENCE CUST#
START WITH 1

INCREMENT BY 1
NO MAXVALUE

NO CYCLE

ORDER;
CREATE TABLE US_CUSTOMER
(CUST# INTEGER NOT NULL
, CNAME CHAR (10) NOT NULL
,FRST SALE DATE NOT NULL
, #SALES INTEGER NOT NULL
, PRIMARY KEY (CUSTH#)) ;

CREATE TRIGGER US_CUST INS

NO CASCADE BEFORE INSERT ON US_CUSTOMER
REFERENCING NEW AS NNN

FOR EACH ROW MODE DB2SQL

SET NNN.CUST# = NEXTVAL FOR CUST#;

CREATE TABLE INTL CUSTOMER

(CUSTH# INTEGER NOT NULL
, CNAME CHAR (10) NOT NULL
,FRST SALE DATE NOT NULL
, #SALES INTEGER NOT NULL
, PRIMARY KEY (CUSTH#)) ;

CREATE TRIGGER INTL_CUST INS

NO CASCADE BEFORE INSERT ON INTL_CUSTOMER
REFERENCING NEW AS NNN

FOR EACH ROW MODE DB2SQL

SET NNN.CUST# = NEXTVAL FOR CUST#;

Figure 669, Create tables that use a common seguence

If we now insert some rows into the above tables, we shall find that customer numbers are
assigned in the correct order, thus:

INSERT INTO US_CUSTOMER (CNAME, FRST SALE, #SALES)

VALUES (’'FRED’,’2002-10-22',1)
, ("JOHN’,"2002-10-23",1) ;

INSERT INTO INTL_CUSTOMER (CNAME, FRST SALE, #SALES)
VALUES (’SUE’,’2002-11-12',2)
, ("DEB’,"2002-11-13",2);

COMMIT;
ANSWERS

SELECT * CUST# CNAME FRST SALE #SALES
FROM US CUSTOMER mmmmm mmmem e
ORDER BY CUST# 1 FRED 10/22/2002 1
2 JOHN 10/23/2002 1

SELECT * CUST# CNAME FRST SALE #SALES
FROM INTL CUSTOMER mmmmm mmmmm mmmimmoo
ORDER BY CUSTE; 3 SUE 11/12/2002 2
4 DEB 11/13/2002 2

Figure 670, Insert into tables with common sequence

240 Sequences

DB2 UDB/V8.1 Cookbook ©

One of the advantages of a standalone sequence over afunctionaly similar identity column is
that one can use aPREV VAL expression to get the most recent value assigned (to the user),
even if the previous usage was during a multi-row insert. Thus, after doing the above inserts,
we can run the following query:

WITH TEMP (PREV) AS ANSWER
(VALUES (PREVVAL FOR CUST#)) ======
SELECT * PREV

FROM TEMP; -—--

Figure 671, Get previous value - select

The following does the same as the above, but puts the result in a host variable:

VALUES PREVVAL FOR CUST# INTO :host-var
Figure 672, Get previous value - into host-variable

Using the above, we cannot find out how many rows were inserted in the most recent insert,
nor to which table the insert was done. And we cannot even be sure that the value is correct,
because the insert may have been rolled back after the value was assigned.

Counting Deletes

In the next example, two sequences are created: One records the number of rows deleted from
atable, while the other records the number of delete statements run against the same:

CREATE SEQUENCE DELETE ROWS
START WITH 1
INCREMENT BY 1
NO MAXVALUE
NO CYCLE
ORDER ;

CREATE SEQUENCE DELETE_STMTS
START WITH 1
INCREMENT BY 1
NO MAXVALUE

NO CYCLE
ORDER;
CREATE TABLE CUSTOMER
(CUST# INTEGER NOT NULL
, CNAME CHAR (10) NOT NULL
,FRST SALE DATE NOT NULL
, #SALES INTEGER NOT NULL
, PRIMARY KEY (CUSTH#)) ;

CREATE TRIGGER CUST_DEL_ROWS

AFTER DELETE ON CUSTOMER

FOR EACH ROW MODE DB2SQL
WITH TEMP1 (N1) AS (VALUES (1))
SELECT NEXTVAL FOR DELETE_ROWS
FROM TEMP1;

CREATE TRIGGER CUST_DEL_ STMTS

AFTER DELETE ON CUSTOMER

FOR EACH STATEMENT MODE DB2SQL
WITH TEMP1 (N1) AS (VALUES(1))
SELECT NEXTVAL FOR DELETE_ STMTS
FROM TEMP1;

Figure 673, Count deletes done to table

Be aware that the second trigger will be run, and thus will update the sequence, regardless of
whether arow was found to delete or not.

Identity Columns and Sequences 241

Graeme Birchall ©

Identity Columns vs. Sequences - a Comparison

First to compare the two types of sequences:

Only oneidentity column is alowed per table, whereas asingle table can have multiple
sequences and/or multiple references to the same sequence.

Identity columns are not supported in databases with multiple partitions.
Identity column sequences cannot span multiple tables. Sequences can.

Sequences require triggers to automatically maintain column values (e.g. during inserts)
in tables. Identity columns do not.

Sequences can be incremented during inserts, updates, deletes (viatriggers), or selects,
whereas identity columns only get incremented during inserts.

Sequences can be incremented (via triggers) once per row, or once per statement. ldentity
columns are always updated per row inserted.

Sequences can be dropped and created independent of any tables that they might be used
to maintain valuesin. Identity columns are part of the table definition.

Identity columns are supported by the load utility. Trigger induced sequences are not.

Now to compare the expressions that get the current status:

242

The IDENTITY_VAL_LOCAL function returns null if no inserts to tables with identity
columns have been done by the current user. In an equivalent situation, the PREVVAL
expression gets a nasty SQL error.

The IDENTITY_VAL_LOCAL function ignores multi-row inserts (without telling you).
Inasimilar situation, the PREVVAL expression returns the last value generated.

One cannot tell to which table an IDENTITY_VAL_LOCAL function result refersto.
This can be a prablem in one insert invokes another insert (via atrigger), which puts are
row in another table with its own identity column. By contrast, in the PREVVAL func-
tion one explicitly identifies the sequence to be read.

There is no equivalent of the NEXTVAL expression for identity columns.

Sequences

DB2 UDB/V8.1 Cookbook ©

Temporary Tables

Introduction

How one defines atemporary table dependsin part upon how often, and for how long, one

intends to use it:

e Within aquery, single use.

e Within aquery, multiple uses.

e For multiple queriesin one unit of work.

e For multiple queries, over multiple units of work, in one thread.

Single Use in Single Statement

If oneintends to use atemporary table just once, it can be defined as a nested table expres-
sion. In the following example, we use a temporary table to sequence the matching rowsin
the STAFF table by descending salary. We then select the 2nd through 3rd rows:

SELECT id

,salary
FROM (SELECT S.*
,ROW_NUMBER () OVER (ORDER BY salary DESC) AS sorder
FROM staff s
WHERE id < 200 ANSWER
)AS xxx =============
WHERE sorder BETWEEN 2 AND 3 ID SALARY

ORDER BY id;

Figure 674, Nested Table Expression

50 20659.80
140 21150.00

NOTE: A fullselect in parenthesis followed by a correlation name (see above) is also

called a nested table expression.

Here is another way to express the same:

WITH xxx (id, salary, sorder)

(SELECT 1ID

,salary
,ROW_NUMBER()
FROM staff
WHERE id < 200

)
SELECT id

AS

OVER (ORDER BY salary DESC) AS sorder

,salary ID SALARY
FROM XXX e e
WHERE sorder BETWEEN 2 AND 3 50 20659.80

ORDER BY id;

Figure 675, Common Table Expression

Multiple Use in Single Statement

140 21150.00

Imagine that one wanted to get the percentage contribution of the salary in some set of rows
in the STAFF table - compared to the total salary for the same. The only way to do thisisto
access the matching rows twice; Once to get the total salary (i.e. just one row), and then again
tojoin the total salary value to each individual salary - to work out the percentage.

Temporary Tables

243

Graeme Birchall ©

Selecting the same set of rows twice in asingle query is generally unwise because repeating
the predicates increases the likelihood of typos being made. In the next example, the desired
rows are first placed in atemporary table. Then the sum salary is calculated and placed in
another temporary table. Finally, the two temporary tables are joined to get the percentage:

WITH ANSWER
rows_wanted AS ================================
(SELECT * ID NAME SALARY SUM_SAL PCT
FROM staff R I ---
WHERE id < 100 70 Rothman 16502.83 34504.58 47
AND UCASE (name) LIKE ’'%T%’ 90 Koonitz 18001.75 34504.58 52

),
sum_salary AS
(SELECT SUM(salary) AS sum sal
FROM rows_wanted)
SELECT id
,hame
,salary
,sum_sal
,INT ((salary * 100) / sum _sal) AS pct
FROM rows_wanted
,sum_salary
ORDER BY id;

Figure 676, Common Table Expression

Multiple Use in Multiple Statements

To refer to atemporary table in multiple SQL statements in the same thread, one has to define
adeclared global temporary table. An example follows:

DECLARE GLOBAL TEMPORARY TABLE session.fred

(dept SMALLINT NOT NULL
,avg_salary DEC(7,2) NOT NULL
,num_emps SMALLINT NOT NULL)
ON COMMIT PRESERVE ROWS;

COMMIT;

INSERT INTO session.fred
SELECT dept
,AVG (salary)

, COUNT (*) ANSWER#1
FROM staff m========
WHERE id > 200 CNT
GROUP BY dept; -—-
COMMIT; 4
SELECT COUNT (*) AS cnt
FROM session.fred; ANSWER#2
DELETE FROM session.fred DEPT AVG_SALARY NUM EMPS
WHERE dept > 80; memm oo T
10 20168.08 3
SELECT * 51 15161.43 3
FROM session. fred; 66 17215.24 5

Figure 677, Declared Global Temporary Table

Unlike an ordinary table, a declared global temporary tableis not defined in the DB2 cata
logue. Nor isit sharable by other users. It only exists for the duration of the thread (or |ess)
and can only be seen by the person who created it. For more information, see page 251.

244 Introduction

DB2 UDB/V8.1 Cookbook ©

Temporary Tables - in Statement

Three general syntaxes are used to define temporary tablesin a query:

o UseaWITH phrase at the top of the query to define a common table expression.
e Defineafull-select in the FROM part of the query.

e Defineafull-select in the SELECT part of the query.

The following three queries, which are logically equivalent, illustrate the above syntax styles.
Observe that the first two queries are explicitly defined as |eft outer joins, while the last oneis
implicitly aleft outer join:

WITH staff dept AS ANSWER
(SELECT dept AS dept# ==========================
,MAX (salary) AS max_sal ID DEPT SALARY MAX SAL
FROM staff —mm mmmm mmmmm—mm —m—m- -
WHERE dept < 50 10 20 18357.50 18357.50
GROUP BY dept 190 20 14252.75 18357.50
) 200 42 11508.60 18352.80
SELECT id 220 51 17654.50 -
,dept
,salary
,max_sal
FROM staff
LEFT OUTER JOIN
staff dept
ON dept = dept#
WHERE name LIKE ’'S%’

ORDER BY id;
Figure 678, Identical query (1 of 3) - using Common Table Expression

SELECT id ANSWER
,dept ==========================
,salary ID DEPT SALARY MAX SAL
,max_sal Smm mmmm mmmmmmm s ——m—— oo
FROM staff 10 20 18357.50 18357.50
LEFT OUTER JOIN 190 20 14252.75 18357.50
(SELECT dept AS dept# 200 42 11508.60 18352.80
,MAX (salary) AS max_sal 220 51 17654.50 -
FROM staff
WHERE dept < 50

GROUP BY dept
)AS STAFF dept

ON dept = dept#
WHERE name LIKE ’'S%’

ORDER BY id;
Figure 679, Identical query (2 of 3) - using full-select in FROM

SELECT id ANSWER
,dept ==========================
,salary ID DEPT SALARY MAX SAL
, (SELECT MAX (salary) B
FROM staff s2 10 20 18357.50 18357.50
WHERE sl.dept = s2.dept 190 20 14252.75 18357.50
AND s2.dept < 50 200 42 11508.60 18352.80
GROUP BY dept) 220 51 17654.50 -
AS max_sal
FROM staff sl
WHERE name LIKE ’‘S%’

ORDER BY id;
Figure 680, Identical query (3 of 3) - using full-select in SELECT

Temporary Tables 245

Graeme Birchall ©

Common Table Expression

A common table expression is a named temporary table that is retained for the duration of a
SQL statement. There can be many temporary tablesin asingle SQL statement. Each must
have a unique name and be defined only once.

All references to atemporary table (in agiven SQL statement run) return the same resullt.
Thisisunlike tables, views, or aliases, which are derived each time they are called. Also
unlike tables, views, or aliases, temporary tables never contain indexes.

WITH giaentifier AS (select stmt) J—}
V L(col. names) l —E j

values stmt

Figure 681, Common Table Expression Syntax
Certain rules apply to common table expressions:

e Column names must be specified if the expression isrecursive, or if the query invoked
returns duplicate column names.

e The number of column names (if any) that are specified must match the number of col-
umns returned.

e |f thereis more than one common-table-expression, latter ones (only) can refer to the
output from prior ones. Cyclic references are not allowed.

e A common table expression with the same name as areal table (or view) will replace the
real table for the purposes of the query. The temporary and real tables cannot be referred
to in the same query.

e Temporary table names must follow standard DB2 table naming standards.
e Each temporary table name must be unique within a query.

e Temporary tables cannot be used in sub-queries.
Select Examples

In thisfirst query, we don't haveto list the field names (at the top) because every field already
has a name (given in the SELECT):

WITH templ AS ANSWER
(SELECT MAX (name) AS max_ name ==================
,MAX (dept) AS max_dept MAX NAME MAX DEPT

FROM staft e o
) Yamaguchi 84
SELECT *

FROM templ;

Figure 682, Common Table Expression, using named fields

In this next example, the fields being selected are unnamed, so names have to be specified in
the WITH statement:

WITH templ (max name,max_dept) AS ANSWER
(SELECT MAX (name) mm—m—=—m—m—=—=—=—==—===
,MAX (dept) MAX NAME MAX DEPT

FROM staft e ame -
) Yamaguchi 84
SELECT *

FROM templ;

Figure 683, Common Table Expression, using unnamed fields

246 Temporary Tables - in Statement

DB2 UDB/V8.1 Cookbook ©

A single query can have multiple common-table-expressions. In this next example we use two
expressions to get the department with the highest average sdary:

WITH ANSWER
templ AS —=========
(SELECT dept MAX AVG

,AVG(salary) AS avg sal —----—----
FROM staff 20865.8625
GROUP BY dept),
temp2 AS
(SELECT MAX (avg_sal) AS max_avg
FROM templ)
SELECT *

FROM temp2;
Figure 684, Query with two common table expressions

FY, the exact same query can be written using nested table expressions thus:

SELECT * ANSWER
FROM (SELECT MAX(avg_sal) AS max_avg ==========
FROM (SELECT dept MAX AVG
,AVG(salary) AS avg sal —---------
FROM staff 20865.8625
GROUP BY dept
)AS templ
)AS temp2;

Figure 685, Same as prior example, but using nested table expressions

The next query first builds atemporary table, then derives a second temporary table from the
first, and then joins the two temporary tables together. The two tables refer to the same set of
rows, and so use the same predicates. But because the second table was derived from the first,
these predicates only had to be written once. This greatly ssimplified the code:

WITH templ AS ANSWER
(SELECT id ==========================
,name ID DEPT SALARY MAX SAL
,dept B e
,salary 10 20 18357.50 18357.50
FROM staff 190 20 14252.75 18357.50
WHERE id < 300 200 42 11508.60 11508.60
AND dept <> b55 220 51 17654.50 17654.50
AND name LIKE ’S%’
AND dept NOT IN

(SELECT deptnumb

FROM org

WHERE division
OR location

' SOUTHERN'
"HARTFORD')

)
,temp2 AS
(SELECT dept
,MAX (salary) AS max_sal
FROM templ
GROUP BY dept
)
SELECT tl.id
,t1l.dept
,tl.salary
,£2.max_sal
FROM templ tl1
,temp2 t2
WHERE tl.dept = t2.dept
ORDER BY tl1.id;

Figure 686, Deriving second temporary table from first

Temporary Tables 247

Graeme Birchall ©

Insert Usage

A common table expression can be used to an insert-select-from statement to build al or part
of the set of rows that are inserted:

INSERT INTO staff

WITH templ (maxl) AS

(SELECT MAX(id) + 1

FROM staff

)

SELECT maxl,’A’,1,'B’,2,3,4

FROM templ;
Figure 687, Insert using common table expression

Asit happens, the above query can be written equally well in the raw:

INSERT INTO staff
SELECT MAX (id) + 1
7 ,A,/l/ ,B’,2,3,4
FROM staff;
Figure 688, Equivalent insert (to above) without common table expression

Full-Select

A full-select is an alternative way to define atemporary table. Instead of using aWITH clause
at the top of the statement, the temporary table definition is embedded in the body of the SQL
statement. Certain rules apply:

e When used in a select statement, a full-select can either be generated in the FROM part of
the query - where it will return atemporary table, or in the SELECT part of the query -
where it will return a column of data.

e When theresult of afull-select is atemporary table (i.e. in FROM part of aquery), the
table must be provided with a correlation name.

o When theresult of afull-select isacolumn of data (i.e. in SELECT part of query), each
reference to the temporary table must only return a single value.

Full-Select in FROM Phrase

The following query uses a hested table expression to get the average of an average - in this
case the average departmental salary (an average in itself) per division:

SELECT division
,DEC (AVG (dept_avg) ,7,2) AS div_dept

, COUNT (*) AS #dpts
, SUM (#emps) AS #emps
FROM (SELECT division
, dept
,AVG (salary) AS dept avg
, COUNT (*) AS #emps
FROM staff ANSWER
,0rg ==============================
WHERE dept = deptnumb DIVISION DIV _DEPT #DPTS #EMPS
GROUP BY division = —---m-mmmm mmmmmmmm oo oo o
, dept Corporate 20865.86 1 4
)AS xxXX Eastern 15670.32 3 13
GROUP BY division; Midwest 15905.21 2 9
Western 16875.99 2 9

Figure 689, Nested column function usage

The next query illustrates how multiple full-selects can be nested inside each other:

248 Temporary Tables - in Statement

DB2 UDB/V8.1 Cookbook ©

SELECT id ANSWER
FROM (SELECT * ======
FROM (SELECT id, years, salary ID
FROM (SELECT * ---
FROM (SELECT * 170
FROM staff 180
WHERE dept < 77 230
JAS t1
WHERE id < 300
)AS t2
WHERE job LIKE 'C%’
)AS t3
WHERE salary < 18000
)AS t4

WHERE vyears < 5;
Figure 690, Nested full-selects

A very common usage of afull-select isto join aderived table to areal table. In the following
example, the average salary for each department is joined to the individual staff row:

SELECT a.id ANSWER
,a.dept =========================
,a.salary ID DEPT SALARY AVG DEPT
,DEC(b.avgsal,7,2) AS avg_dept —m e mmmmmm s -
FROM staff a 10 20 18357.50 16071.52
LEFT OUTER JOIN 20 20 18171.25 16071.52
(SELECT dept AS dept 30 38 17506.75 -
,AVG (salary) AS avgsal
FROM staff

GROUP BY dept
HAVING AVG(salary) > 16000

JAS b
ON a.dept = b.dept
WHERE a.id < 40

ORDER BY a.id;
Figure 691, Join full-select to real table

Table Function Usage

If the full-select query has areferenceto arow in atable that is outside of the full-select, then
it needs to be written asa TABLE function call. In the next example, the preceding "A" table
isreferenced in the full-select, and so the TABLE function call is required:

SELECT a.id ANSWER
,a.dept =========================
,a.salary ID DEPT SALARY DEPTSAL
,b.deptsal I e I
FROM staff a 10 20 18357.50 64286.10
, TABLE 20 20 18171.25 64286.10
(SELECT b.dept 30 38 17506.75 77285.55
,SUM (b.salary) AS deptsal
FROM staff b
WHERE b.dept = a.dept
GROUP BY b.dept
)AS b
WHERE a.id < 40

ORDER BY a.id;
Figure 692, Full-select with external table reference

Below is the same query written without the reference to the "A" table in the full-select, and
thus without a TABLE function call:

Temporary Tables 249

Graeme Birchall ©

SELECT a.id ANSWER
,a.dept =========================
,a.salary ID DEPT SALARY DEPTSAL
,b.deptsal I e I
FROM staff a 10 20 18357.50 64286.10
, (SELECT b.dept 20 20 18171.25 64286.10
,SUM (b.salary) AS deptsal 30 38 17506.75 77285.55
FROM staff b
GROUP BY b.dept
)AS b
WHERE a.id < 40
AND b.dept = a.dept

ORDER BY a.id;
Figure 693, Full-select without external table reference

Any externally referenced table in afull-select must be defined in the query syntax (starting at
the first FROM statement) before the full-select. Thus, in the first example above, if the"A"
table had been listed after the "B" table, then the query would have been invalid.

Full-Select in SELECT Phrase

A full-select that returns a single column and row can be used in the SELECT part of a query:

SELECT id ANSWER
,salary ====================
, (SELECT MAX (salary) ID SALARY MAXSAL
FROM staff R b
) AS maxsal 10 18357.50 22959.20
FROM staff a 20 18171.25 22959.20
WHERE id < 60 30 17506.75 22959.20
ORDER BY id; 40 18006.00 22959.20

Figure 694, Use an uncorrelated Full-Select in a SELECT list

A full-select in the SELECT part of a statement must return only asingle row, but it need not
always be the same row. In the following example, the ID and SALARY of each employeeis
obtained - along with the max SALARY for the employee’s department.

SELECT id ANSWER
,salary ====================
, (SELECT MAX (salary) ID SALARY MAXSAL
FROM staff b - mmmmmmmm -
WHERE a.dept = b.dept 10 18357.50 18357.50
) AS maxsal 20 18171.25 18357.50
FROM staff a 30 17506.75 18006.00
WHERE id < 60 40 18006.00 18006.00
ORDER BY id; 50 20659.80 20659.80
Figure 695, Use a correlated Full-Select in a SELECT list
SELECT id ANSWER
,dept ==================================
,salary ID DEPT SALARY 4 5
, (SELECT MAX (salary) B T i
FROM staff b 10 20 18357.50 18357.50 22959.20
WHERE b.dept = a.dept) 20 20 18171.25 18357.50 22959.20
, (SELECT MAX (salary) 30 38 17506.75 18006.00 22959.20
FROM staff) 40 38 18006.00 18006.00 22959.20
FROM staff a 50 15 20659.80 20659.80 22959.20

WHERE 1d < 60
ORDER BY id;

Figure 696, Use correlated and uncorrelated Full-Selectsin a SELECT list
INSERT Usage

The following query uses both an uncorrelated and correlated full-select in the query that
builds the set of rows to be inserted:

250 Temporary Tables - in Statement

DB2 UDB/V8.1 Cookbook ©

INSERT INTO staff
SELECT id + 1
, (SELECT MIN (name)
FROM staff)
, (SELECT dept
FROM staff s2
WHERE s2.id = sl1.id - 100)

llAllll2l3
FROM staff si1
WHERE id =

(SELECT MAX (id)
FROM staff) ;

Figure 697, Full-select in INSERT
UPDATE Usage

The following example uses an uncorrelated full-select to assign a set of workers the average
salary in the company - plus two thousand dollars.

UPDATE staff a ANSWER : SALARY

SET salary = ======= =================
(SELECT AVG(salary)+ 2000 ID DEPT BEFORE AFTER
FROM staff) mm mmmm mmm e oo

WHERE id < 60; 10 20 18357.50 18675.64

50 15 20659.80 18675.64
Figure 698, Use uncorrelated Full-Select to give workers company AVG salary (+$2000)

The next statement uses a correlated full-select to assign a set of workers the average salary
for their department - plus two thousand dollars. Observe that when there is more than one
worker in the same department, that they all get the same new salary. Thisis because the full-
select is resolved before the first update was done, not after each.

UPDATE staff a ANSWER : SALARY

SET salary = ======= =================
(SELECT AVG(salary) + 2000 ID DEPT BEFORE AFTER
FROM staff b = mmm e e
WHERE a.dept = b.dept) 10 20 18357.50 18071.52

WHERE id < 60; 20 20 18171.25 18071.52

50 15 20659.80 17482.33
Figure 699, Use correlated Full-Select to give workers department AVG salary (+$2000)

NOTE: A full-select is always resolved just once. If it is queried using a correlated expres-
sion, then the data returned each time may differ, but the table remains unchanged.

Declared Global Temporary Tables

If we want to temporarily retain some rows for processing by subsequent SQL statements, we
can use a Declared Global Temporary Table. The type of table only exists until the thread is
terminated (or sooner). It is not defined in the DB2 catalogue, and neither its definition nor its
contents are visible to other users.

Temporary Tables 251

Graeme Birchall ©

w DECLARE GLOBAL TEMPORARY TABLE —— table-name }

(icolumn-name — column-definition) }

LIKE table-name

—[view-name] J

AS __ (__fullselect __) DEFINITION ONLY

klNCLUDING FCOLUMNj DEFAULTS
EXCLUDING J

—EXCLUDING IDENTITY [COLUMN ATTRIBUTES

’—COLUMN ATTRIBUTES B }

—

LINCLUDING IDENTITY
} ~ ON COMMIT DELETE ROWS ——
| wiTH REPLACE | | ON cOMMIT PRESERVE ROWS |
Figure 700, Declared Global Temporary Table syntax

NOT LOGGED

Below is an example of declaring a global temporary table the old fashioned way:

DECLARE GLOBAL TEMPORARY TABLE session.fred

(dept SMALLINT NOT NULL
,avg_salary DEC(7,2) NOT NULL
,num_emps SMALLINT NOT NULL)

ON COMMIT DELETE ROWS;
Figure 701, Declare Global Temporary Table - define columns

In the next example, the temporary table is defined to have exactly the same columns as the
existing STAFF table:

DECLARE GLOBAL TEMPORARY TABLE session.fred

LIKE staff INCLUDING COLUMN DEFAULTS

WITH REPLACE
ON COMMIT PRESERVE ROWS;

Figure 702, Declare Global Temporary Table - like another table

In the next example, the temporary table is defined to have a set of columnsthat are returned
by a particular select statement. The statement is not actually run at definition time, so any
predicates provided areirrelevant:

DECLARE GLOBAL TEMPORARY TABLE session.fred AS
(SELECT dept

,MAX (id) AS max_id
,SUM (salary) AS sum_sal
FROM staff
WHERE name <> ’'IDIOT’

GROUP BY dept)
DEFINITION ONLY
WITH REPLACE;

Figure 703, Declare Global Temporary Table - like query output

Indexes can be added to temporary tablesin order to improve performance and/or to enforce
uniqueness.

252 Declared Global Temporary Tables

DB2 UDB/V8.1 Cookbook ©

DECLARE GLOBAL TEMPORARY TABLE session.fred

LIKE staff INCLUDING COLUMN DEFAULTS

WITH REPLACE ON COMMIT DELETE ROWS;

CREATE UNIQUE INDEX session.fredx ON Session.fred (id);

INSERT INTO session.fred

SELECT *
FROM staff
WHERE id < 200;

ANSWER
SELECT COUNT (*) ======
FROM session. fred; 19
COMMIT;

ANSWER

SELECT COUNT (*) ——=—=-
FROM session. fred; 0
Figure 704, Temporary table with index

A temporary table has to be dropped to reuse the same name:
DECLARE GLOBAL TEMPORARY TABLE session.fred

(dept SMALLINT NOT NULL
,avg_salary DEC(7,2) NOT NULL
,num_emps SMALLINT NOT NULL)

ON COMMIT DELETE ROWS;

INSERT INTO session.fred
SELECT dept
,AVG (salary)
, COUNT (*)
FROM staff
GROUP BY dept;

SELECT COUNT (*) —=====
FROM session. fred; 8

DROP TABLE session.fred;

DECLARE GLOBAL TEMPORARY TABLE session.fred
(dept SMALLINT NOT NULL)

ON COMMIT DELETE ROWS;

SELECT COUNT (*) ======
FROM session. fred; 0

Figure 705, Dropping a temporary table
Usage Notes

For a compl ete description of this feature, see the SQL reference. Below are some key points:

e Thetemporary table name can be any valid DB2 table name. The qudlifier, if provided,
must be SESSION. If the qualifier is not provided, it is assumed to be SESSION. If the
temporary table aready exists, the WITH REPLACE clause must be used to override it.

e Anindex can be defined on a global temporary table. The quaifier (i.e. SESSION) must
be explicitly provided.

e Any column type can be used, except the following: BLOB, CLOB, DBCLOB, LONG
VARCHAR, LONG VARGRAPHIC, DATALINK, reference, and structured data types.

e One can choose to preserve or delete (the default) the rows when a commit occurs.
e Standard identity column definitions can be added if desired.

Temporary Tables 253

Graeme Birchall ©

e Changes are not logged.

Before auser can create a declared global temporary table, a USER TEMPORARY table-
space that they have access to, has to be created. A typical definition follows:

CREATE USER TEMPORARY TABLESPACE FRED

MANAGED BY DATABASE

USING (FILE ‘C:\DB2\TEMPFRED\FRED1’ 1000

,FILE ’'C:\DB2\TEMPFRED\FRED2’ 1000
,FILE ’'C:\DB2\TEMPFRED\FRED3’ 1000) ;

GRANT USE OF TABLESPACE FRED TO PUBLIC;
Figure 706, Create USER TEMPORARY tablespace

Do NOT use to Hold Output

In general, do not use a Declared Global Temporary Table to hold job output data, especially
if thetableis defined ON COMMIT PRESERVE ROWS. If the jab fails halfway through, the
contents of the temporary table will belost. If, prior to the failure, the job had updated and
then committed Production data, it may be impossible to recreate the lost output because the
committed rows cannot be updated twice.

254 Declared Global Temporary Tables

DB2 UDB/V8.1 Cookbook ©

Recursive SQL

Recursive SQL enables oneto efficiently resolve all manner of complex logica structures
that can be really tough to work with using other techniques. On the down side, it isalittle
tricky to understand at first and it is occasionally expensive. In this chapter we shall first
show how recursive SQL works and then illustrate some of the really cute things that one use
it for.

Use Recursion To

e Create sample data.

e Select thefirst "n" rows.

o Generate asimple parser.

o ResolveaBill of Materials hierarchy.

e Normalize and/or denormalize data structures.

When (Not) to Use Recursion

A good SQL statement is one that gets the correct answer, is easy to understand, and is effi-
cient. Let us assume that a particular statement is correct. If the statement uses recursive SQL,
it is never going to be categorized as easy to understand (though the reading gets much easier
with experience). However, given the question being posed, it is possible that arecursive
SQL statement is the simplest way to get the required answer.

Recursive SQL statements are neither inherently efficient nor inefficient. Because they often
involve ajoin, it isvery important that suitable indexes be provided. Given appropriate in-
dexes, it is quite probable that arecursive SQL statement is the most efficient way to resolve
a particular business problem. It al depends upon the nature of the question: If every row
processed by the query isrequired in the answer set (e.g. Find al people who work for Bob),
then arecursive statement is likely to very efficient. If only afew of the rows processed by
the query are actually needed (e.g. Find al airline flights from Boston to Dallas, then show
only the five fastest) then the cost of resolving alarge data hierarchy (or network), most of
which isimmediately discarded, can be very prohibitive.

If one wants to get only a small subset of rows in alarge data structure, it is very important
that of the unwanted data is excluded as soon as possible in the processing sequence. Some of
the queriesillustrated in this chapter have some rather complicated code in them to do just
this. Also, always be on the lookout for infinitely looping data structures.

Conclusion

Recursive SQL statements can be very efficient, if coded correctly, and if there are suitable
indexes. When either of the above is not true, they can be very slow.

How Recursion Works

Below is adescription of avery ssimple application. The table on the left contains a normal-
ized representation of the hierarchical structure on the right. Each row in the table defines a
relationship displayed in the hierarchy. The PKEY field identifies a parent key, the CKEY

Recursive SQL 255

Graeme Birchall ©

field has related child keys, and the NUM field has the number of times the child occurs
within the related parent.

HIERARCHY AAA
e + |

PKEY |CKEY |NUM T ————— +----- T
AAA BBB 1 BBB ccc DDD
AAA |CCC 5 |

AAA DDD 20 e
CCC |EEE 33 | | |
DDD EEE 44 EEE FFF
DDD FFF 5

FFF GGG 5

tommm oo m oo + GGG

Figure 707, Sample Table description - Recursion

List Dependents of AAA

We want to use SQL to get alist of all the dependents of AAA. Thislist should include not
only those items like CCC that are directly related, but also values such as GGG, which are
indirectly related. The easiest way to answer this question (in SQL) isto use arecursive SQL
statement that goes thus:

WITH parent (pkey, ckey) AS ANSWER
(SELECT pkey, ckey s======== PROCESSING
FROM hierarchy PKEY CKEY SEQUENCE
WHERE pkey = ’‘AAA’ e - ==========
UNION ALL AAA BBB < 1lst pass
SELECT C.pkey, C.ckey AAA CCC wn
FROM hierarchy C AAA DDD nn

,parent P CCC EEE < 2nd pass

WHERE P.ckey = C.pkey DDD EEE < 3rd pass
) DDD FFF nn

SELECT pkey, ckey FFF GGG < 4th pass

FROM parent;
Figure 708, QL that does Recursion

The above statement is best described by decomposing it into its individual components, and
then following of sequence of events that occur:

o TheWITH statement at the top defines atemporary table called PARENT.

e The upper part of the UNION ALL isonly invoked once. It does an initial population of
the PARENT table with the three rows that have an immediate parent key of AAA .

o Thelower part of the UNION ALL isrun recursively until there are no more matches to
thejoin. Inthejoin, the current child value in the temporary PARENT table isjoined to
related parent valuesin the DATA table. Matching rows are placed at the front of the
temporary PARENT table. Thisrecursive processing will stop when al of the rowsin the
PARENT table have been joined to the DATA table.

e The SELECT phrase at the bottom of the statement sends the contents of the PARENT
table back to the user’s program.

Another way to look at the above processisto think of the temporary PARENT tableasa
stack of data. This stack isinitially populated by the query in the top part of the UNION ALL.
Next, a cursor starts from the bottom of the stack and goes up. Each row obtained by the cur-
sor isjoined to the DATA table. Any matching rows obtained from the join are added to the
top of the stack (i.e. in front of the cursor). When the cursor reaches the top of the stack, the
statement is done. The following diagram illustrates this process:

256 How Recursion Works

DB2 UDB/V8.1 Cookbook ©

KEY > AAA IAAA AAA CCC DDD |DDD FFF
KEY > BBB |CCC [DDD EEE EEE |FFF GGG

L ! ! TTl_T

Figure 709, Recursive processing sequence

Notes & Restrictions

Recursive SQL requires that there be a UNION ALL phrase between the two main parts
of the statement. The UNION ALL, unlike the UNION, alows for duplicate output rows,
which iswhat often comes out of recursive processing.

Recursive SQL isusualy afairly efficient. When it involves ajoin similar to the example
shown above, it isimportant to make sure that this join is done efficiently. To this end,
suitable indexes should always be provided.

The output of arecursive SQL is atemporary table (usualy). Therefore, al temporary
table usage restrictions also apply to recursive SQL output. See the section titled *Com-
mon Table Expression” for details.

The output of one recursive expression can be used as input to another recursive expres-
sion in the same SQL statement. This can be very handy if one has multiple logical hier-
archiesto traverse (e.g. First find all of the statesin the USA, then final all of thecitiesin
each state).

Any recursive coding, in any language, can get into an infinite loop - either because of
bad coding, or because the data being processed has a recursive value structure. To pre-
vent your SQL running forever, see the section titled "Halting Recursive Processing” on
page 266.

Sample Table DDL & DML

CREATE TABLE hierarchy

(pkey CHAR (03) NOT NULL
, ckey CHAR (03) NOT NULL
,num SMALLINT NOT NULL

,PRIMARY KEY (pkey, ckey)
,CONSTRAINT dtl CHECK (pkey <> ckey)
,CONSTRAINT dt2 CHECK (num > 0));

COMMIT;
CREATE UNIQUE INDEX hier x1 ON hierarchy
(ckey, pkey);
COMMIT;
INSERT INTO hierarchy VALUES
"AAA’,'BBB’, 1),
"AAA’,'CCC’', 5),
"AAA’,'DDD’,20),

cce’, "EEE’,33),
'DDD’ , 'EEE’ , 44) ,
'DDD’ , 'FFF’, 5),
("FFF’','GGG’, 5);
COMMIT;

(
(
(
(
(
(

Figure 710, Sample Table DDL - Recursion

Recursive SQL 257

Graeme Birchall ©

Introductory Recursion

This section will use recursive SQL statements to answer a series of simple business ques-
tions using the sample HIERARCHY table described on page 257. Be warned that things are
going to get decidedly more complex as we proceed.

List all Children #1

Find all the children of AAA. Don't worry about getting rid of duplicates, sorting the data, or
any other of the finer details.

WITH parent (ckey) AS ANSWER HIERARCHY
(SELECT ckey ====== e +
FROM hierarchy CKEY PKEY |CKEY |NUM
WHERE pkey = 'AAA’ e I B ---
UNION ALL BBB AAA BBB 1
SELECT C.ckey ccce AAA ccce 5
FROM hierarchy C DDD AAA DDD 20
,parent P EEE ccc EEE 33
WHERE P.ckey = C.pkey EEE DDD |EEE 44
) FFF DDD |FFF 5
SELECT ckey GGG FFF GGG 5
FROM parent; e il R +

Figure 711, List of children of AAA

WARNING: Much of the SQL shown in this section will loop forever if the target database
has a recursive data structure. See page 266 for details on how to prevent this.

The above SQL statement uses standard recursive processing. Thefirst part of the UNION
ALL seedsthe temporary table PARENT. The second part recursively joins the temporary
table to the source data table until there are no more matches. The final part of the query dis-
plays the result set.

Imagine that the HIERARCHY table used above is very large and that we also want the above
query to be as efficient as possible. In this case, two indexes are required; Thefirst, on PKEY,
enablestheinitia select to run efficiently. The second, on CKEY, makes the join in the recur-
sive part of the query efficient. The second index is arguably more important than the first
because thefirst is only used once, whereas the second index is used for each child of the top-
level parent.

List all Children #2

Find all the children of AAA, includein thislist the value AAA itself. To satisfy the latter
reguirement we will change the first SELECT statement (in the recursive code) to select the
parent itself instead of the list of immediate children. A DISTINCT is provided in order to
ensure that only one line containing the name of the parent (i.e. "AAA") is placed into the
temporary PARENT table.

NOTE: Before the introduction of recursive SQL processing, it often made sense to define
the top-most level in a hierarchical data structure as being a parent-child of itself. For ex-
ample, the HIERARCHY table might contain a row indicating that "AAA" is a child of
"AAA". If the target table has data like this, add another predicate: C.PKEY <> C.CKEY to
the recursive part of the SQL statement to stop the query from looping forever.

258 Introductory Recursion

DB2 UDB/V8.1 Cookbook ©

WITH parent (ckey) AS ANSWER HIERARCHY
(SELECT DISTINCT pkey ====== fmm e — - +
FROM hierarchy CKEY PKEY |CKEY |NUM
WHERE pkey = 'AAA’ e I I ---
UNION ALL AAA AAA BBB 1
SELECT C.ckey BBB AAA cce 5
FROM hierarchy C ccc AAA DDD 20
,parent P DDD ccc EEE 33
WHERE P.ckey = C.pkey EEE DDD |EEE 44
) EEE DDD |FFF 5
SELECT ckey FFF FFF GGG 5
FROM parent; GGG i +

Figure 712, List all children of AAA

In most, but by no means all, business situations, the above SQL statement is more likely to
be what the user really wanted than the SQL before. Ask before you code.

List Distinct Children

Get adistinct list of al the children of AAA. This query differs from the prior only in the use
of the DISTINCT phrasein the final select.

WITH parent (ckey) AS ANSWER HIERARCHY
(SELECT DISTINCT pkey ====== fmm e +
FROM hierarchy CKEY PKEY |CKEY |NUM
WHERE pkey = 'AAA’ S SRR ---
UNION ALL AAA AAA BBB 1
SELECT C.ckey BBB AAA CCcC 5
FROM hierarchy C Ccc AAA DDD 20
,parent P DDD Ccc EEE 33
WHERE P.ckey = C.pkey EEE DDD EEE 44
) FFF DDD FFF 5
SELECT DISTINCT ckey GGG FFF GGG 5
FROM parent; e +

Figure 713, List distinct children of AAA

The next thing that we want to do is build a distinct list of children of AAA that we can then
useto join to other tables. To do this, we simply define two temporary tables. The first does
the recursion and is called PARENT. The second, called DISTINCT_PARENT, takesthe
output from the first and removes duplicates.

WITH parent (ckey) AS ANSWER HIERARCHY
(SELECT DISTINCT pkey ====== tomm e mmm - +
FROM hierarchy CKEY PKEY |[CKEY |NUM
WHERE pkey = ’‘AAA’ e EpupupE -
UNION ALL AAA AAA BBB 1
SELECT C.ckey BBB AAA CCcC 5
FROM hierarchy C ccc AAA DDD 20

,parent P DDD ccc EEE 33
WHERE P.ckey = C.pkey EEE DDD |EEE 44
). FFF DDD FFF 5

distinct_parent (ckey) AS GGG FFF GGG 5

(SELECT DISTINCT ckey tomm - +

FROM parent
)
SELECT ckey
FROM distinct parent;

Figure 714, List distinct children of AAA

Show Item Level

Get alist of al the children of AAA. For each value returned, show itslevel in the logical
hierarchy relative to AAA.

Recursive SQL 259

Graeme Birchall ©

WITH parent (ckey, 1vl) AS ANSWER AAA
(SELECT DISTINCT pkey, O ======== |
FROM hierarchy CKEY LVL +---=- +---=- +
WHERE pkey = ’‘AAA’ e -
UNION ALL AAA 0 BBB ccc DDD
SELECT C.ckey, P.1lvl +1 BBB 1 | |
FROM hierarchy C Ccc 1 +-4 -+

,parent o) DDD 1 | | |

WHERE P.ckey = C.pkey EEE 2 EEE FFF
) EEE 2

SELECT ckey, 1vl FFF 2

FROM parent; GGG 3 GGG

Figure 715, Show item level in hierarchy

The above statement has a derived integer field called LVL. In theinitial population of the
temporary table thislevel valueis set to zero. When subsequent levels are reached, thisvalue
in incremented by one.

Select Certain Levels
Get alist of all the children of AAA that are less than three levels below AAA.

WITH parent (ckey, 1lvl) AS ANSWER HIERARCHY
(SELECT DISTINCT pkey, O ======== Fmmm e mm +
FROM hierarchy CKEY LVL PKEY |CKEY |NUM
WHERE pkey = ‘AAA’ R e e -
UNION ALL AAA 0 AAA BBB 1
SELECT C.ckey, P.1vl +1 BBB 1 AAA Ccc 5
FROM hierarchy C CCcC 1 AAA DDD 20
,parent P DDD 1 Ccc EEE 33
WHERE P.ckey = C.pkey EEE 2 DDD EEE 44
) EEE 2 DDD FFF 5
SELECT ckey, 1vl FFF 2 FFF GGG 5
FROM parent e +

WHERE 1vl < 3;
Figure 716, Select rows where LEVEL < 3

The above statement has two main deficiencies:
e [t will runforever if the database contains an infinite loop.

o |t may beinefficient because it resolves the whole hierarchy before discarding those lev-
elsthat are not required.

To get around both of these problems, we can move the level check up into the body of the
recursive statement. This will stop the recursion from continuing as soon as we reach the tar-
get level. Wewill haveto add "+ 1" to the check to make it logicaly equivalent:

WITH parent (ckey, 1vl) AS ANSWER ARA
(SELECT DISTINCT pkey, 0 —======= |
FROM hierarchy CKEY LVL PR fmm - +
WHERE pkey = ‘AAA’ R |
UNION ALL AAA 0 BBB CcccC DDD
SELECT C.ckey, P.1lvl +1 BBB 1 | |
FROM hierarchy C cce 1 ot -
,parent P DDD 1 | | |
WHERE P.ckey = C.pkey EEE 2 EEE FFF
AND P.1lvl+1l < 3 EEE 2
) FFF 2
SELECT ckey, 1vl GGG

FROM parent;
Figure 717, Select rows where LEVEL < 3

260 Introductory Recursion

DB2 UDB/V8.1 Cookbook ©

The only difference between this statement and the one before is that the level check is now
done in the recursive part of the statement. This new level-check predicate has a dua func-
tion: It gives us the answer that we want, and it stops the SQL from running forever if the
database happens to contain an infinite loop (e.g. DDD was also a parent of AAA).

One problem with this general statement design isthat it can not be used to list only that data
which pertains to a certain lower level (e.g. display only level 3 data). To answer thiskind of
guestion efficiently we can combine the above two queries, having appropriate predicatesin
both places (see next).

Select Explicit Level
Get alist of al the children of AAA that are exactly two levels below AAA.

WITH parent (ckey, 1lvl) AS ANSWER HIERARCHY

(SELECT DISTINCT pkey, 0 S======= 4o +
FROM hierarchy CKEY LVL PKEY |CKEY |NUM
WHERE pkey = ‘ABA’ —mee e e e ---
UNION ALL EEE 2 AAA BBB 1
SELECT C.ckey, P.1vl +1 EEE 2 AAA ccc 5
FROM hierarchy C FFF 2 AAA DDD 20
,parent P Ccc EEE 33

WHERE P.ckey = C.pkey DDD EEE 44
AND P.1lvl+1l < 3 DDD FFF 5

) FFF |GGG 5
SELECT ckey, 1vl fmm - +

FROM parent
WHERE 1vl = 2;

Figure 718, Select rows where LEVEL = 2

In the recursive part of the above statement al of the levels up to and including that which is
required are obtained. All undesired lower levels are then removed in the final select.

Trace a Path - Use Multiple Recursions

Multiple recursive joins can be included in asingle query. The joins can run independently, or
the output from one recursive join can be used as input to a subsequent. Such code enables
one to do the following:

e Expand multiple hierarchies in asingle query. For example, one might first get alist of
all departments (direct and indirect) in a particular organization, and then use the depart-
ment list as a seed to find al employees (direct and indirect) in each department.

e Go down, and then up, agiven hierarchy in asingle query. For example, one might want
to find al of the children of AAA, and then al of the parents. The combined result is the
list of objectsthat AAA isrelated to viaadirect parent-child path.

e Go down the same hierarchy twice, and then combine the results to find the matches, or
the non-matches. This type of query might be used to, for example, seeif two companies
own shares in the same subsidiary.

The next example recursively searches the HIERARCHY table for al valuesthat are either a
child or aparent (direct or indirect) of the object DDD. Thefirst part of the query gets the list
of children, the second part getsthe list of parents (but never the value DDD itself), and then

the results are combined.

Recursive SQL 261

WITH children (kkey, 1lvl) AS
(SELECT ckey, 1

FROM hierarchy
WHERE pkey = ’'DDD’
UNION ALL

SELECT H.ckey, C.1vl + 1

FROM hierarchy H
,children C

WHERE H.pkey = C.kkey

)

,parents (kkey, 1lvl) AS
(SELECT pkey, -1
FROM hierarchy
WHERE ckey = 'DDD’
UNION ALL

SELECT H.pkey, P.1vl - 1

FROM hierarchy H
,parents P

WHERE H.ckey = P.kkey

)

SELECT kkey ,1vl
FROM children

UNION ALL

SELECT kkey ,1vl
FROM parents;

Figure 719, Find all children and parents of DDD

Extraneous Warning Message

ANSWER

KKEY LVL
AAA -1
EEE 1
FFF 1
GGG 2

Graeme Birchall ©

BBB CccC DDD

+-+ +-+--+

EEE FFF

GGG

Some recursive SQL statements generate the following warning when the DB2 parser has

reason to suspect that the statement may run forever:

SQL0347W The recursive common table expression "GRAEME.TEMP1" may contain an

infinite loop. SQLSTATE=01605

The text that accompanies this message provides detailed instructions on how to code recur-
sive SQL so asto avoid getting into an infinite loop. The troubleis that even if you do exactly
astold you may still get the silly message. To illustrate, the following two SQL statements
are almost identical. Y et the first gets a warning and the second does not:

WITH templ (nl) AS

(SELECT id
FROM staff
WHERE id = 10
UNION ALL
SELECT nl +10
FROM templ
WHERE nl < 50
)

SELECT *

FROM templ;

Figure 720, Recursion - with warning message

WITH templ (nl) AS
(SELECT INT (id)

FROM staff
WHERE id = 10
UNION ALL
SELECT nl +10
FROM templ
WHERE nl < 50
)

SELECT *

FROM templ;

Figure 721, Recursion - without warning message

262

Introductory Recursion

DB2 UDB/V8.1 Cookbook ©

If you know what you are doing, ignore the message.

__|]
Logical Hierarchy Flavours

Before getting into some of the really nasty stuff, we best give a brief overview of the various
kinds of logical hierarchy that exist in the real world and how each is best represented in a
relational database.

Some typical data hierarchy flavours are shown below. Note that the three on the left form
one, mutually exclusive, set and the two on the right another. Therefore, it is possible for a
particular hierarchy to be both divergent and unbalanced (or balanced), but not both divergent
and convergent.

DIVERGENT CONVERGENT RECURSIVE BALANCED UNBALANCED
AAA AAA AAA<--+ AAA AAA
+"!"+ +—-l——+ +—-l——+ +—-l——+ +—-l——+

B1|3B C(|Z'C B]|3B C'(|3C' B]|3B C'(|3C'>+ B]|3B C'(|3C' B]|3B C'(|3C'

+"!"+ J——+—J——+ +—-l——+ JL___+ +—-l——+
D]|DD E}|3E D]|3D EEllE D]|3D EEllE DDD EEllE FPl'F D]|3D EEllE

Figure 722, Hierarchy Flavours

Divergent Hierarchy

In this flavour of hierarchy, no object has more than one parent. Each object can have none,
one, or more than one, dependent child objects. Physical objects (e.g. Geographic entities)
tend to be represented in this type of hierarchy.

Thistype of hierarchy will often incorporate the concept of different layersin the hierarchy
referring to differing kinds of object - each with its own set of attributes. For example, a Geo-
graphic hierarchy might consist of countries, states, cities, and street addresses.

A single table can be used to represent this kind of hierarchy in afully normalized form. One
field in the table will be the unique key, another will point to the related parent. Other fields
in the table may pertain either to the object in question, or to the relationship between the ob-
ject and its parent. For example, in the following table the PRICE field has the price of the
object, and the NUM field has the number of times that the object occursin the parent.

OBJECTS_RELATES ATA
Fmm - mmmmm e mm e mm—m—m - +
KEYO |PKEY |NUM|PRICE T ----- fmm——- T
AAA $10 BBB cce DDD
BBB AAA 1 $21 |
ccc |AAA 5 $23 do -t
DDD |AAA 20| $25 | |
EEE DDD 44 $33 EEE FFF
FFF DDD 5 $34
GGG FFF 5 $44
o mmmm e mmmmmmm————— - + GGG

Figure 723, Divergent Hierarchy - Table and Layout

Recursive SQL 263

Graeme Birchall ©

Some database designers like to make the arbitrary judgment that every object has a parent,
and in those cases where thereisno "real" parent, the object considered to be a parent of it-
sdlf. In the above table, this would mean that AAA would be defined as a parent of AAA.
Please appreciate that this judgment call does not affect the objects that the database repre-
sents, but it can have a dramatic impact on SQL usage and performance.

Prior to the introduction of recursive SQL, defining top level objects as being self-parenting
was sometimes a good idea because it enabled one to resolve a hierarchy using asimplejoin
without unions. This same process is now best done with recursive SQL. Furthermore, if ob-
jectsin the database are defined as self-parenting, the recursive SQL will get into an infinite
loop unless extra predicates are provided.

Convergent Hierarchy

NUMBER OF TABLES: A convergent hierarchy has many-to-many relationships that re-
quire two tables for normalized data storage. The other hierarchy types require but a sin-
gle table.

In thisflavour of hierarchy, each object can have none, one, or more than one, parent and/or
dependent child objects. Convergent hierarchies are often much more difficult to work with

than similar divergent hierarchies. Logical entities, or man-made objects, (e.g. Company Di-
visions) often have this type of hierarchy.

Two tables are required in order to represent thiskind of hierarchy in afully normalized form.
One table describes the object, and the other describes the relationships between the objects.

OBJECTS RELATIONSHIPS AAR
fmmmmm—mmm o + e e + |
KEYO |PRICE PKEY |CKEY |NUM +----- +----- +
AAA $10 AAA |BBB 1 B}|313 ccc D]|3D
BBB $21 AAA |CCC 5 |
Cccc $23 ADA DDD 20 -+ -4+
DDD $25 CCC |EEE 33 | | |
EEE $33 DDD |EEE 44 EEE FFF
FFF $34 DDD |FFF 5
GGG $44 FFF |GGG 5

+---mmmm - + tomm s e GGG

+
Figure 724, Convergent Hierarchy - Tables and Layout

One has to be very careful when resolving a convergent hierarchy to get the answer that the
user actually wanted. To illustrate, if we wanted to know how many children AAA hasin the
above structure the "correct” answer could be six, seven, or eight. To be precise, we would
need to know if EEE should be counted twice and if AAA is considered to be achild of itself.

Recursive Hierarchy

WARNING: Recursive data hierarchies will cause poorly written recursive SQL statements
to run forever. See the section titled "Halting Recursive Processing" on page 266 for de-
tails on how to prevent this, and how to check that a hierarchy is not recursive.

In thisflavour of hierarchy, each object can have none, one, or more than one parent. Also,
each object can be a parent and/or a child of itself via another object, or viaitself directly. In
the business world, this type of hierarchy is almost always wrong. When it does exist, it is
often because a standard convergent hierarchy has gone a bit haywire.

This database design is exactly the same as the one for a convergent hierarchy. Two tables are
(usually) required in order to represent the hierarchy in afully normalized form. One table
describes the object, and the other describes the relationships between the objects.

264 Logical Hierarchy Flavours

DB2 UDB/V8.1 Cookbook ©

OBJECTS RELATIONSHIPS ABA <------ ¥
fmmmmm—mmm o + e e + |
KEYO |PRICE PKEY |CKEY |NUM P fomm - ¥
AAA $10 AAA |BBB 1 B}|313 céc D]|3D>—+
BBB $21 AAA |CCC 5 | |
Cccc $23 AAA DDD 20 +-+ +-+--+
DDD $25 CCC |EEE 33 | | |
EEE $33 DDD |AAA 99 EEE FFF
FFF $34 DDD |FFF 5
GGG $44 DDD |EEE 44 }
+--------- - + FFF GGG 5 elele]

_______________ +

+
Figure 725, Recursive Hierarchy - Tables and Layout

Prior to the introduction of recursive SQL, it took some non-trivial coding root out recursive
data structures in convergent hierarchies. Now it is ano-brainer, see page 266 for details.

Balanced & Unbalanced Hierarchies

In some logical hierarchies the distance, in terms of the number of intervening levels, from
the top parent entity to its lowest-level child entitiesis the same for al legs of the hierarchy.
Such ahierarchy is considered to be balanced. An unbalanced hierarchy is one where the dis-
tance from atop-level parent to alowest-level child is potentially different for each leg of the
hierarchy.

AAA << Balanced hierarchy AAA
| Unbalanced hierarchy >»> |
+----- +----- + et TR
| | | |
BBB CccC DDD CCC DDD
| | |
S to+ -+
| | |
EEE FFF GGG HHH FFF GGG HHH

IIT
Figure 726, Balanced and Unbalanced Hierarchies

Balanced hierarchies often incorporate the concept of levels, where alevel is a subset of the
valuesin the hierarchy that are al of the same time and are also the same distance from the
top level parent. For example, in the balanced hierarchy above each of the three levels shown
might refer to a different category of object (e.g. country, state, city). By contrast, in the un-
balanced hierarchy above is probable that the objects being represented are all of the same
general category (e.g. companies that own other companies).

Divergent hierarchies are the most likely to be balanced. Furthermore, balanced and/or diver-
gent hierarchies are the kind that are most often used to do data summation at various inter-
mediate levels. For example, a hierarchy of countries, states, and cities, is likely to be summa-
rized at any level.

Data & Pointer Hierarchies

The difference between a data and a pointer hierarchy is not one of design, but of usage. Ina
pointer schema, the main application tables do not store a description of the logical hierarchy.
Instead, they only store the base data. Separate to the main tables are one, or more, related
tables that define which hierarchies each base data row belongs to.

Recursive SQL 265

Graeme Birchall ©

Typicaly, in apointer hierarchy, the main data tables are much larger and more active than
the hierarchical tables. A banking application is a classic example of this usage pattern. There
is often one table that contains core customer information and several related tables that en-
able one to do analysis by customer category.

A data hierarchy is an altogether different beast. An example would be a set of tables that
contain information on all that parts that make up an aircraft. In thiskind of application the
most important information in the database is often that which pertains to the relationships
between objects. These tend to be very complicated often incorporating the attributes. quan-
tity, direction, and version.

Recursive processing of adata hierarchy will often require that one does alot more than just
find all dependent keys. For example, to find the gross weight of an aircraft from such a data-
base one will have to work with both the quantity and weight of all dependent objects. Those
objects that span sub-assembles (e.g. a bolt connecting to engine to the wing) must not be
counted twice, missed out, nor assigned to the wrong sub-grouping. As always, such ques-
tions are essentialy easy to answer, the trick isto get the right answer.

Halting Recursive Processing

One occasionally encounters recursive hierarchical data structures (i.e. where the parent item
points to the child, which then points back to the parent). This section describes how to write
recursive SQL statements that can process such structures without running forever. There are
three general techniques that one can use:

e Stop processing after reaching a certain number of levels.

o Keep arecord of where you have been, and if you ever come back, either fail or in some
other way stop recursive processing.

o Keep arecord of where you have been, and if you ever come back, simply ignore that
row and keep on resolving the rest of hierarchy.
Sample Table DDL & DML

The following table is a normalized representation of the recursive hierarchy on the right.
Note that AAA and DDD are both a parent and a child of each other.

TROUBLE AAA <------ +

DDD |AAA <=== This row EEE FFF
DDD |FFF points back to

DDD |EEE the hierarchy }
FFF |GGG parent. GGG
B +

Figure 727, Recursive Hierarchy - Sample Table and Layout
Below isthe DDL and DML that was used to create the above table.

266 Halting Recursive Processing

DB2 UDB/V8.1 Cookbook ©

CREATE TABLE trouble
(pkey CHAR (03) NOT NULL
, ckey CHAR (03) NOT NULL) ;

CREATE UNIQUE INDEX tble x1 ON trouble (pkey, ckey);
CREATE UNIQUE INDEX tble x2 ON trouble (ckey, pkey);

INSERT INTO trouble VALUES

("AAA’, "BBB’),
("AAR’,"CCCT),
("AAA’, 'DDD’) ,
(rccc’, "EEE’) ,
('DDD’, "AAA’) ,
('DDD’, 'EEE’) ,
('DDD’ , 'FFF'),
("FFF’,'GGG’) ;

Figure 728, Sample Table DDL - Recursive Hierarchy
Other Loop Types

In the above table, the beginning object (i.e. AAA) is part of the data loop. This type of loop
can be detected using simpler SQL than what is given here. But aloop that does not include
the beginning object (e.g. AAA pointsto BBB, which points to CCC, which points back to
BBB) requires the somewhat complicated SQL that is used in this section.

Stop After "n" Levels
Find all the children of AAA. In order to avoid running forever, stop after four levels.

WITH parent (pkey, ckey, 1lvl) AS ANSWER TROUBLE
(SELECT DISTINCT ============= +--------- +
pkey PKEY CKEY LVL PKEY | CKEY
,pkey —-—e —-—e - - ----
, 0 AAA AAA 0 AAA |BBB
FROM trouble AAA BBB 1 AAA |CCC
WHERE pkey = 'AAA’ AAA CCC 1 AAA |DDD
UNION ALL AAA DDD 1 CCC |EEE
SELECT C.pkey CCC EEE 2 DDD |AAA
,C.ckey DDD AAA 2 DDD |FFF
,Polvl + 1 DDD EEE 2 DDD |EEE
FROM trouble C DDD FFF 2 FFF |GGG
,parent P AAA BBB 3 tommmmm——— +
WHERE P.ckey = C.pkey AAA CCC 3
AND P.1vl + 1 < 4 AAA DDD 3
) FFF GGG 3

SELECT *
FROM parent;

Figure 729, Sop Recursive SQL after "n" levels

In order for the above statement to get the right answer, we need to know before beginning
the maximum number of valid dependent levels (i.e. non-looping) there are in the hierarchy.
Thisinformation is then incorporated into the recursive predicate (see: P.LVI + 1 < 4).

If the number of levelsis not known, and we guess wrong, we may not find all the children of
AAA. For example, if we had stopped at "2" in the above query, we would not have found the
child GGG.

A more specific disadvantage of the above statement is that the list of children contains dupli-
cates. These duplicates include those specific values that compose the infinite loop (i.e. AAA
and DDD), and aso any children of either of the above.

Recursive SQL 267

Graeme Birchall ©

Stop When Loop Found

A far better way to stop recursive processing isto halt when, and only when, we determine
that we have been to the target row previously. To do this, we need to maintain a record of
where we have been, and then check this record against the current key value in each row
joined to. DB2 does not come with an in-built function that can do this checking, so we shall
define our own.

Define Function

Below is the definition code for a user-defined DB2 function that is very similar to the stan-
dard LOCATE function. It searches for one string in another, block by block. For example, if
one was looking for the string "ABC", this function would search the first three bytes, then
the next three bytes, and so on. If amatch is found, the function returns the relevant block
number, else zero.

CREATE FUNCTION LOCATE_BLOCK(SearchStr VARCHAR (30000)
,lookinstr VARCHAR (30000))
RETURNS INTEGER
BEGIN ATOMIC
DECLARE lookinlen,
DECLARE locatevar, returnvar INT DEFAULT O0;
DECLARE beginlook INT DEFAULT 1;
SET lookinlen = LENGTH (lookinstr) ;
SET searchlen = LENGTH (searchstr) ;
WHILE locatevar = 0 AND
beginlook <= lookinlen DO
SET locatevar = LOCATE (searchstr, SUBSTR (lookinstr
,beginlook
,searchlen)) ;

searchlen INT;

SET beginlook
SET returnvar
END WHILE;
IF locatevar = 0
SET returnvar

beginlook + searchlen;
returnvar + 1;

THEN

= 0;
END IF;
RETURN returnvar;

END

Figure 730, LOCATE_BLOCK user defined function

Below is an example of the function in use. Observe that the function did not find the string
"th" in the name "Smith" because the two characters did not start in an position that was some
multiple of the length of the test string:

SELECT id ANSWER
, NAME =================
, LOCATE (' th’ , name) AS L1 ID NAME Ll L2

,LOCATE _BLOCK(’th’,name) AS L2
FROM staff
WHERE LOCATE (’th’,name) > 1;

Figure 731, LOCATE_BLOCK function example

NOTE: The LOCATE_BLOCK function shown above is the minimalist version, without any
error checking. If it were used in a Production environment, it would have checks for nulls,
and for various invalid input values.

70 Rothman 3 2
220 Smith 4 0

Use Function

Now all we need to do is build a string, as we do the recursion, that holds every key value that
has previously been accessed. This can be done using simple concatenation:

268 Halting Recursive Processing

DB2 UDB/V8.1 Cookbook ©

WITH parent (pkey, ckey, 1lvl, path, loop) AS
(SELECT DISTINCT

pkey
, pkey ANSWER
, 0 ===============================
, VARCHAR (pkey, 20) PKEY CKEY LVL PATH LOOP
, 0 R it -—--
FROM trouble AAA AAA 0 AAA 0
WHERE pkey = ’'AAA’ AAA BBB 1 AAABBB 0
UNION ALL AAA CCC 1 AAACCC 0
SELECT C.pkey AAA DDD 1 AAADDD 0
,C.ckey CCC EEE 2 AAACCCEEE 0
,P.Ivl + 1 DDD AAA 2 AAADDDAAA 1
,P.path || C.ckey DDD EEE 2 AAADDDEEE 0
,LOCATE_BLOCK (C.ckey,P.path) DDD FFF 2 AAADDDFFF 0
FROM trouble C AAA BBB 3 AAADDDAAABBB 0
,parent P AAA CCC 3 AAADDDAAACCC 0
WHERE P.ckey = C.pkey AAA DDD 3 AAADDDAAADDD 2
AND P.1lvl + 1 < 4 FFF GGG 3 AAADDDFFFGGG 0
)
SELECT *
FROM parent; TROUBLE
+--------- + AAA <------ +
PKEY | CKEY |
- +----- +----- +
AAA |BBB | | |
AAA |CCC BBB CCC DDD>-+
AAA |DDD | |
CCC |EEE +-+ +-+--+
This row ===> DDD |AAA | |
points back to DDD |FFF EEE FFF
the hierarchy DDD |EEE
parent. FFF |GGG
tommmmm——— + GGG

Figure 732, Show path, and rowsin loop

Now we can get rid of the level check, and instead use the LOCATE_BLOCK function to
avoid loopsin the data:

WITH parent (pkey, ckey, 1lvl, path) AS ANSWER

(SELECT DISTINCT ==========================
pkey PKEY CKEY LVL PATH
, pkey - - —- -
, 0 AAA AAA 0 AAA
, VARCHAR (pkey, 20) AAA BBB 1 AAABBB

FROM trouble AAA CCC 1 AAACCC

WHERE pkey = 'AAA’ AAA DDD 1 AAADDD

UNION ALL CCC EEE 2 AAACCCEEE

SELECT C.pkey DDD EEE 2 AAADDDEEE
,C.ckey DDD FFF 2 AAADDDFFF
,P.1lvl + 1 FFF GGG 3 AAADDDFFFGGG
,P.path || C.ckey

FROM trouble C
,parent P
WHERE P.ckey
AND LOCATE_BLOCK(C.ckey,P.path)
)

SELECT *
FROM parent;

Figure 733, Use LOCATE_BLOCK function to stop recursion

The next query is the same as the previous, except that instead of excluding all loops from the
answer-set, it marks them as such, and gets the first item, but goes no further;

C.pkey

Recursive SQL 269

Graeme Birchall ©

WITH parent (pkey, ckey, 1lvl, path, loop) AS
(SELECT DISTINCT

pkey

bkey

, 0

, VARCHAR (pkey, 20) ANSWER

, 0 ===============================
FROM trouble PKEY CKEY LVL PATH LOOP
WHERE pkey = ’'AAR’ e -
UNION ALL AAA AAA 0 AAA 0
SELECT C.pkey AAA BBB 1 AAABBB 0

,C.ckey AAA CCC 1 AAACCC 0

,P.lvl + 1 AAA DDD 1 AAADDD 0

,P.path || C.ckey CCC EEE 2 AAACCCEEE 0

,LOCATE_BLOCK (C.ckey,P.path) DDD AAA 2 AAADDDAAA 1
FROM trouble C DDD EEE 2 AAADDDEEE 0

,parent P DDD FFF 2 AAADDDFFF 0
WHERE P.ckey = C.pkey FFF GGG 3 AAADDDFFFGGG 0

AND P.loop 0

)
SELECT *
FROM parent;

Figure 734, Use LOCATE_BLOCK function to stop recursion

The next query tosses in another predicate (in the final select) to only list those rows that
point back to apreviously processed parent:

WITH parent (pkey, ckey, 1lvl, path, loop) AS ANSWER
(SELECT DISTINCT =========
pkey PKEY CKEY
,pkey
0 DDD AAA

, VARCHAR (pkey, 20)
, 0
FROM trouble

WHERE pkey = ’'AAA’
UNION ALL
SELECT C.pkey
,C.ckey TROUBLE
,Polvl + 1 B i +
,P.path || C.ckey PKEY | CKEY
, LOCATE_BLOCK(C.ckey,P.path) - -
FROM trouble C AAA |BBB
,parent P AAA | CCC
WHERE P.ckey = C.pkey AAA |DDD
AND P.loop = 0 CCC |EEE
) This row ===> DDD |AAA
SELECT pkey points back to DDD |FFF
, ckey the hierarchy DDD |EEE
FROM parent parent. FFF |GGG
WHERE 1loop > 0; Fomm - +

Figure 735,List rows that point back to a parent

To delete the offending rows from the table, al one hasto do isinsert the above valuesinto a
temporary table, then delete those rows in the TROUBLE table that match. However, before
one does this, one has decide which rows are the ones that should not be there.

In the above query, we started processing at AAA, and then said that any row that points back
to AAA, or to some child or AAA, is causing aloop. We thus identified the row from DDD to
AAA asbeing aproblem. But if we had started at the value DDD, we would have said instead
that the row from AAA to DDD was the problem. The point to remember her is that the row
you decide to delete is a consequence of the row that you decided to define as your starting
point.

270 Halting Recursive Processing

DB2 UDB/V8.1 Cookbook ©

DECLARE GLOBAL TEMPORARY TABLE SESSION.del list
(pkey CHAR (03) NOT NULL

,ckey CHAR(03) NOT NULL)

ON COMMIT PRESERVE ROWS;

INSERT INTO SESSION.del list
WITH parent (pkey, ckey, 1lvl, path, loop) AS
(SELECT DISTINCT

pkey
bkey
0 TROUBLE
, VARCHAR (pkey, 20) e +
, 0 PKEY | CKEY
FROM trouble ———| ===
WHERE pkey = 'AAA’ AAA |BBB
UNION ALL AAA |CCC
SELECT C.pkey AAA |DDD
,C.ckey CCC |EEE
,Polvl + 1 This row ===> DDD |AAA
,P.path || C.ckey points back to DDD |FFF
, LOCATE_BLOCK(C.ckey,P.path) the hierarchy DDD |EEE
FROM trouble C parent. FFF |GGG
,parent P +--------- +
WHERE P.ckey = C.pkey
AND P.loop = 0 AAA <------ +
) |
SELECT pkey +----- +---=- +
, ckey |
FROM parent BBB CccC DDD>-+
WHERE loop > 0; | |
-t -+
DELETE || |
FROM trouble EEE FFF

WHERE (pkey,ckey) IN
(SELECT pkey, ckey
FROM SESSION.del 1list); GGG

Figure 736, Delete rows that loop back to a parent
Working with Other Key Types

The LOCATE_BLOCK solution shown above works fine, aslong as the key in question isa
fixed length character field. If it isn't, it can be converted to one, depending on what it is:

e Cast VARCHAR columns as type CHAR.
e Convert other field types to character using the HEX function.

Keeping the Hierarchy Clean

Rather that go searching for loops, one can toss in a couple of triggers that will prevent the
table from every getting dataloopsin the first place. There will be one trigger for inserts, and
another for updates. Both will have the same general logic:

e For each row inserted/updated, retain the new PKEY value.
e Recursively scan the existing rows, starting with the new CKEY value.

e Compare each existing CKEY value retrieved to the new PKEY value. If it matches, the
changed row will cause aloop, so flag an error.

e If no matchisfound, allow the change.

Hereistheinsert trigger:

Recursive SQL 271

Graeme Birchall ©

CREATE TRIGGER TBL_INS TROUBLE
NO CASCADE BEFORE INSERT ON trouble +-------- - +
REFERENCING NEW AS NNN This trigger PKEY | CKEY
FOR EACH ROW MODE DB2SQL would reject R
WITH temp (pkey, ckey) AS insertion of AAA |BBB
(VALUES (NNN.pkey this row. AAA |CCC
,NNN. ckey) AAA |DDD
UNION ALL CCC |EEE
SELECT TTT.pkey +---> |DDD |AAA
, CASE DDD |FFF
WHEN TTT.ckey = TBL.pkey DDD |EEE
THEN RAISE ERROR(’70001’,'LOOP FOUND') FFF |GGG
ELSE TBL.ckey +ommmmm - +
END
FROM trouble TBL
, temp TTT
WHERE TTT.ckey = TBL.pkey
)
SELECT *

FROM temp;
Figure 737, INSERT trigger

Here is the update trigger:

CREATE TRIGGER TBL_UPD
NO CASCADE BEFORE UPDATE OF pkey, ckey ON trouble
REFERENCING NEW AS NNN
FOR EACH ROW MODE DB2SQL
WITH temp (pkey, ckey) AS
(VALUES (NNN.pkey

,NNN. ckey)
UNION ALL
SELECT TTT.pkey

, CASE

WHEN TTT.ckey = TBL.pkey
THEN RAISE ERROR(’70001’,'LOOP FOUND')
ELSE TBL.ckey

END
FROM trouble TBL
, temp TTT

WHERE TTT.ckey = TBL.pkey

)
SELECT *
FROM temp;

Figure 738, UPDATE trigger

Given the above preexisting TROUBLE data (absent the DDD to AAA row), the following
statements would be rejected by the above triggers:

INSERT INTO trouble VALUES ('GGG’,’'ARA’);

UPDATE trouble SET ckey 'AAA’ WHERE pkey
UPDATE trouble SET pkey GGG’ WHERE ckey

Figure 739, Invalid DML statements

Observe that neither of the above triggers use the LOCATE_BLOCK function to find aloop.
Thisis because these triggers are written assuming that the table is currently loop free. If this
is not the case, they may run forever.

The LOCATE_BLOCK function enables one to check every row processed, to see if one has
been to that row before. In the above triggers, only the start position is checked for loops. So
if there was aloop that did not encompass the start position, the LOCATE_BLOCK check
would find it, but the code used in the triggers would not.

"FEFF’ ;
'DDD’ ;

272 Halting Recursive Processing

DB2 UDB/V8.1 Cookbook ©

Clean Hierarchies and Efficient Joins

Introduction

One of the more difficult problemsin any relational database system involves joining across
multiple hierarchical data structures. The task is doubly difficult when one or more of the hi-
erarchiesinvolved is a data structure that has to be resolved using recursive processing. In this
section, we will describe how one can use a mixture of tables and triggers to answer this kind
of query very efficiently.

A typical question might go as follows: Find all matching rows where the customer isin some
geographic region, and the item sold is in some product category, and person who made the
saleisin some company sub-structure. If each of these qualifications involves expanding a
hierarchy of object relationships of indeterminate and/or nontrivial depth, then asimplejoin
or standard data denormalization will not work.

In DB2, one can answer thiskind of question by using recursion to expand each of the data
hierarchies. Then the query would join (sans indexes) the various temporary tables created by
the recursive code to whatever other data tables needed to be accessed. Unfortunately, the
performance will probably be lousy.

Alternatively, one can often efficiently answer this general question using a set of suitably
indexed summary tables that are an expanded representation of each data hierarchy. With
these tables, the DB2 optimizer can much more efficiently join to other data tables, and so
deliver suitable performance.

In this section, we will show how to make these summary tables and, because it is a prerequi-
site, al'so show how to ensure that the related base tables do not have recursive data structures.
Two solutions will be described: One that is simple and efficient, but which stops updates to
key values. And another that imposes fewer constraints, but which is a bit more complicated.

Limited Update Solution

Below on theleft isahierarchy of dataitems. Thisisatypical unbaanced, non-recursive data
hierarchy. In the center is a normalized representation of this hierarchy. The only thing that is
perhaps alittle unusual hereisthat an item at the top of ahierarchy (e.g. AAA) isdeemed to
be a parent of itself. On the right is an exploded representation of the same hierarchy.

HIERARCHY#1 EXPLODED#1
AAA Fomm e + +--mmm - - +
| KEYY | PKEY | DATA PKEY | CKEY | LVL
1232 R e el e e e N
| AAA |AAA |SOME DATA AAA |AAA 0
+----- + BBB |AAA |MORE DATA AAA |BBB 1
| | CCC |BBB |MORE JUNK AAA |CCC 2
CCC EEE DDD |CCC |MORE JUNK AAA |DDD 3
| EEE |BBB |JUNK DATA AAA |EEE 2
DDD o mmmm e mmmo oo + BBB |BBB 0
BBB |CCC 1
BBB |DDD 2
BBB |EEE 1
cce |cce 0
ccc | DDD 1
DDD |DDD 0
EEE |EEE 0
to-m-mmm-m - — - - +

Figure 740, Data Hierarchy, with normalized and exploded representations

Recursive SQL 273

Graeme Birchall ©

Below isthe CREATE code for the above normalized table and a dependent trigger:
CREATE TABLE hierarchy#l

(keyy CHAR(3) NOT NULL
, pkey CHAR (3) NOT NULL
,data VARCHAR (10)

, CONSTRAINT hierarchyll PRIMARY KEY (keyy)
, CONSTRAINT hierarchyl2 FOREIGN KEY (pkey)
REFERENCES hierarchy#l (keyy) ON DELETE CASCADE) ;

CREATE TRIGGER HIR#1 UPD
NO CASCADE BEFORE UPDATE OF pkey ON hierarchy#1
REFERENCING NEW AS NNN
OLD AS 00O
FOR EACH ROW MODE DB2SQL
WHEN (NNN.pkey <> 000.pkey)
SIGNAL SQLSTATE ‘70001’ (’'CAN NOT UPDATE pkey’) ;

Figure 741, Hierarchy table that does not allow updates to PKEY
Note the following:

e TheKEYY columnisthe primary key, which ensures that each value must be unique,
and that thisfield can not be updated.

e ThePKEY columnisaforeign key of the KEY'Y column. This means that this field must
alwaysrefer to avalid KEYY value. Thisvalue can either be in another row (if the new
row isbeing inserted at the bottom of an existing hierarchy), or in the new row itself (if a
new independent data hierarchy is being established).

e The ON DELETE CASCADE referential integrity rule ensures that when arow is de-
leted, all dependent rows are also del eted.

e The TRIGGER prevents any updates to the PKEY column. Thisis a BEFORE trigger,
which means that it stops the update before it is applied to the database.

All of the above rules and restrictions act to prevent either an insert or an update for ever act-
ing on any row that is not at the bottom of a hierarchy. Consequently, it is not possible for a
hierarchy to ever exist that contains aloop of multiple data items.

Creating an Exploded Equivalent

Once we have ensured that the above table can never have recursive data structures, we can
define a dependent table that holds an exploded version of the same hierarchy. Triggers will
be used to keep the two tables in sync. Here isthe CREATE code for the table:

CREATE TABLE exploded#l

(pkey CHAR(4) NOT NULL
,ckey CHAR (4) NOT NULL
,1vl SMALLINT NOT NULL
, PRIMARY KEY (pkey, ckey)) ;

Figure 742, Exploded table CREATE statement

The following trigger deletes all dependent rows from the exploded table whenever arow is
deleted from the hierarchy table:

CREATE TRIGGER EXP#1 DEL
AFTER DELETE ON hierarchy#l
REFERENCING OLD AS OO0OO
FOR EACH ROW MODE DB2SQL
DELETE
FROM exploded#l
WHERE ckey = 000.keyy;

Figure 743, Trigger to maintain exploded table after deletein hierarchy table

274 Clean Hierarchies and Efficient Joins

DB2 UDB/V8.1 Cookbook ©

The next trigger isrun every time arow isinserted into the hierarchy table. It usesrecursive
code to scan the hierarchy table upwards, looking for all parents of the new row. The result-
set isthen inserted into the exploded table:

CREATE TRIGGER EXP#1 INS HIERARCHY#1 EXPLODED#1
AFTER INSERT ON hierarchy#l e + - - - +
REFERENCING NEW AS NNN KEYY | PKEY | DATA PKEY | CKEY | LVL
FOR EACH ROW MODE DB2SQL | ====|=-==-=|-=--~- e R
INSERT AAA |AAA |S AAA |AAA 0
INTO exploded#l BBB |AAA |M... AAA |BBB 1
WITH temp (pkey, ckey, 1lvl) AS CCC |BBB |M... AAA |CCC 2
(VALUES (NNN.keyy DDD |CCC (M AAA |DDD 3
,NNN. keyy EEE |BBB |J... AAA |EEE 2
,0) tommmmmm e + BBB |BBB 0
UNION ALL BBB |[CCC 1
SELECT N.pkey BBB |DDD 2
,NNN . keyy BBB |EEE 1
,T.1vl +1 CCC |ccc 0
FROM temp T CCcC |DDD 1
,hierarchy#l N DDD |DDD 0
WHERE N.keyy = T.pkey EEE |EEE 0
AND N.keyy <> N.pkey e +
)
SELECT *

FROM temp;
Figure 744, Trigger to maintain exploded table after insert in hierarchy table

There is no update trigger because updates are not allowed to the hierarchy table.
Querying the Exploded Table

Once supplied with suitable indexes, the exploded table can be queried like any other table. It
will always return the current state of the datain the related hierarchy table.

SELECT *
FROM exploded#l
WHERE pkey = :host-var
ORDER BY pkey
, ckey
,1vl;

Figure 745, Querying the exploded table

Full Update Solution

Not all applications want to limit updates to the data hierarchy as was done above. In particu-
lar, they may want the user to be able to move an object, and all its dependents, from one
valid point (in adata hierarchy) to another. This means that we cannot prevent valid updates
to the PKEY value.

Below isthe CREATE statement for a second hierarchy table. The only difference between
this table and the previous oneis that there is now an ON UPDATE RESTRICT clause. This
prevents updates to PKEY that do not point to avalid KEY'Y value — either in another row, or
in the row being updated:

CREATE TABLE hierarchy#2

(keyy CHAR(3) NOT NULL
, pkey CHAR (3) NOT NULL
,data VARCHAR (10)

, CONSTRAINT NO_loopS21 PRIMARY KEY (keyy)

, CONSTRAINT NO_loopS22 FOREIGN KEY (pkey)

REFERENCES hierarchy#2 (keyy) ON DELETE CASCADE
ON UPDATE RESTRICT) ;

Figure 746, Hierarchy table that allows updatesto PKEY

Recursive SQL 275

Graeme Birchall ©

The previous hierarchy table came with atrigger that prevented all updates to the PKEY field.
This table comes instead with atrigger than checks to see that such updates do not result in a
recursive data structure. It starts out at the changed row, then works upwards through the
chain of PKEY values. If it ever comes back to the original row, it flags an error:

CREATE TRIGGER HIR#2_UPD HIERARCHY#2
NO CASCADE BEFORE UPDATE OF pkey ON hierarchy#2 e +
REFERENCING NEW AS NNN KEYY | PKEY | DATA
OoOLb As ocoo == -
FOR EACH ROW MODE DB2SQL AAA |AAA |S
WHEN (NNN.pkey <> 000.pkey BBB |AAA |M...
AND NNN.pkey <> NNN.keyy) CCC |BBB |M...
WITH temp (keyy, pkey) AS DDD |CCC |M
(VALUES (NNN.keyy EEE |BBB |J...
,NNN . pkey) e +
UNION ALL
SELECT LP2.keyy
, CASE

WHEN LP2.keyy = NNN.keyy
THEN RAISE ERROR(’70001’,'LOOP FOUND')
ELSE LP2.pkey

END
FROM hierarchy#2 LP2
, temp TMP
WHERE TMP.pkey = LP2.keyy

AND TMP.keyy <> TMP.pkey

)
SELECT *
FROM temp;

Figure 747, Trigger to check for recursive data structures before update of PKEY

NOTE: The above is a BEFORE trigger, which means that it gets run before the change is
applied to the database. By contrast, the triggers that maintain the exploded table are all
AFTER triggers. In general, one uses before triggers check for data validity, while after
triggers are used to propagate changes.

Creating an Exploded Equivalent

The following exploded table is exactly the same as the previous. It will be maintained in
sync with changes to the related hierarchy table:

CREATE TABLE exploded#2

(pkey CHAR(4) NOT NULL
,ckey CHAR (4) NOT NULL
,1vl SMALLINT NOT NULL
, PRIMARY KEY (pkey, ckey)) ;

Figure 748, Exploded table CREATE statement

Three triggers are required to maintain the exploded table in sync with the related hierarchy
table. The first two, which handle deletes and inserts, are the same as what were used previ-
oudly. The last, which handles updates, is new (and quite tricky).

The following trigger deletes al dependent rows from the exploded table whenever arow is
deleted from the hierarchy table:

CREATE TRIGGER EXP#2 DEL
AFTER DELETE ON hierarchy#2
REFERENCING OLD AS OOO
FOR EACH ROW MODE DB2SQL
DELETE
FROM exploded#2
WHERE ckey = 000.keyy;

Figure 749, Trigger to maintain exploded table after delete in hierarchy table

276 Clean Hierarchies and Efficient Joins

DB2 UDB/V8.1 Cookbook ©

The next trigger isrun every time arow isinserted into the hierarchy table. It usesrecursive
code to scan the hierarchy table upwards, looking for all parents of the new row. The result-
set isthen inserted into the exploded table:

CREATE TRIGGER EXP#2 INS HIERARCHY#2 EXPLODED#2
AFTER INSERT ON hierarchy#2 e + - - - +
REFERENCING NEW AS NNN KEYY | PKEY | DATA PKEY | CKEY | LVL
FOR EACH ROW MODE DB2SQL il Il I e R
INSERT AAA |AAA |S AAA |AAA 0
INTO exploded#2 BBB |AAA |M AAA |BBB 1
WITH temp (pkey, ckey, 1lvl) AS CCC |BBB |M AAA |CCC 2
(SELECT NNN.keyy DDD |CCC (M AAA |DDD 3
,NNN. keyy EEE |BBB |J AAA |EEE 2
, tommmmmm e + BBB |BBB 0
FROM hierarchy#2 BBB |CCC 1
WHERE keyy = NNN.keyy BBB |DDD 2
UNION ALL BBB |EEE 1
SELECT N.pkey CCC |ccc 0
,NNN . keyy ccc | DDD 1
,T.1vl +1 DDD |DDD 0
FROM temp T EEE |EEE 0
,hierarchy#2 N tommm e - +
WHERE N.keyy = T.pkey

AND N.keyy <> N.pkey
)
SELECT *
FROM temp;

Figure 750, Trigger to maintain exploded table after insert in hierarchy table

The next trigger is run every time a PKEY value is updated in the hierarchy table. It deletes
and then reinserts all rows pertaining to the updated object, and al it’s dependents. The code
goes as follows:

Delete all rows that point to children of the row being updated. The row being updated is also
considered to be a child.

In the following insert, first use recursion to get alist of al of the children of the row that has
been updated. Then work out the relationships between all of these children and all of their
parents. Insert this second result-set back into the exploded table.

CREATE TRIGGER EXP#2 UPD
AFTER UPDATE OF pkey ON hierarchy#2
REFERENCING OLD AS OO0OO
NEW AS NNN
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
DELETE
FROM exploded#2
WHERE ckey IN
(SELECT ckey
FROM exploded#2
WHERE pkey = 000.keyy) ;
INSERT
INTO exploded#2
WITH templ (ckey) AS
(VALUES (NNN.keyy)

UNION ALL

SELECT N.keyy

FROM templ T
,hierarchy#2 N

WHERE N.pkey = T.ckey

AND N.pkey <> N.keyy

)
Figure 751, Trigger to run after update of PKEY in hierarchy table (part 1 of 2)

Recursive SQL 277

Graeme Birchall ©

,temp2 (pkey, ckey, 1vl) AS
(SELECT ckey

, ckey
, 0
FROM templ
UNION ALL
SELECT N.pkey
, T.ckey
,T.1vl +1
FROM temp2 T

,hierarchy#2 N
WHERE N.keyy = T.pkey
AND N.keyy <> N.pkey
)
SELECT *
FROM temp2;
END

Figure 752, Trigger to run after update of PKEY in hierarchy table (part 2 of 2)

NOTE: The above trigger lacks a statement terminator because it contains atomic SQL,
which means that the semi-colon can not be used. Choose anything you like.

Querying the Exploded Table

Once supplied with suitable indexes, the exploded table can be queried like any other table. It
will always return the current state of the datain the related hierarchy table.

SELECT *

FROM exploded#2

WHERE pkey = :host-var

ORDER BY pkey

, ckey
,1vl;

Figure 753, Querying the exploded table
Below are some suggested indexes:
e PKEY, CKEY (aready defined as part of the primary key).

e CKEY, PKEY (useful when joining to thistable).

278 Clean Hierarchies and Efficient Joins

DB2 UDB/V8.1 Cookbook ©

Fun with SQL

In this chapter will shall cover some of the fun things that one can and, perhaps, should not
do, using DB2 SQL. Read on at your own risk.

Creating Sample Data

If every application worked exactly as intended from the first, we would never have any need
for test databases. Unfortunately, one often needs to builds test systems in order to both tune
the application SQL, and to do capacity planning. In this section we shall illustrate how very
large volumes of extremely complex test data can be created using relatively simple SQL
statements.

Good Sample Data is

e Reproducible.

e FEasy to make.

e Similar to Production:

e Same data volumes (if needed).

e Same data distribution characteristics.

Create a Row of Data

Select a single column/row entity, but do not use atable or view as the data source.

WITH TEMP1 (COL1l) AS ANSWER
(VALUES 0 —
) COL1
SELECT * o
FROM TEMP1 ; 0

Figure 754, Select one row/column using VALUES

The above statement uses the VALUES statement to define a single row/column in the tem-
porary table TEMPL. Thistableisthen selected from.

Create "n" Rows & Columns of Data

Select multiple rows and columns, but do not use atable or view as the data source.

WITH TEMP1 (COL1l, COL2, COL3
(VALUES (0, 'AA’, 0.00

L 1, 'BB’, 1.11

L (2, 'ccr, 2.22
) 0 AA 0.00
SELECT * 1 BB 1.11
FROM TEMP1; 2 CcC 2.22

Figure 755, Select multiple rows/columns using VALUES

AS ANSWER

)
y =Z=============
)
)

This statement places three rows and columns of datainto the temporary table TEMP1, which
isthen selected from. Note that each row of valuesis surrounded by parenthesis and separated
from the others by acomma.

Fun with SQL 279

Linear Data Generation

Graeme Birchall ©

Create the set of integers between zero and one hundred. In this statement we shall use recur-

sive coding to expand a single value into many more.

WITH TEMP1 (COL1l) AS
(VALUES 0

UNION ALL

SELECT COL1 + 1

FROM TEMP1

WHERE COL1 + 1 < 100
)

SELECT *

FROM TEMP1;

Figure 756, Use recursion to get list of one hundred numbers

Thefirst part of the above recursive statement refersto a single row that has the value zero.
Note that no table or view is selected from in this part of the query, the row is defined using a
VALUES phrase. In the second part of the statement the original row isrecursively added to

itself ninety nine times.

Tabular Data Generation

Create the complete set of integers between zero and one hundred. Display ten numbersin

each line of output.

WITH TEMP1 (CO,C1,C2,C3,C4,C5,C6,C7,C8,C9) AS

(VALUES (o0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
UNION ALL

SELECT C0+10, C1+10, C2+10, C3+10, C4+10

,C5+10, C6+10, C7+10, C8+10, C9+10

FROM TEMP1

WHERE CO0+10 < 100

)
SELECT *
FROM TEMP1 ;

Figure 757, Recursive QL used to make an array of numbers (1 of 2)

The result follows, it is of no functional use, but it looks cute:

Co C1l Cc2 C3 C4 C5 Cé c7

0 1 2 3 4 5 6 7
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77
80 81 82 83 84 85 86 87
90 91 92 93 94 95 96 97

Figure 758, Answer - array of numbers made using recursive SQL

C8 co

8 9
18 19
28 29
38 39
48 49
58 59
68 69
78 79
88 89
98 99

Another way to get exactly the same answer is shown below. If differs from the prior SQL in
that most of the arithmetic is deferred until the final select. Both statements do the job equally

well, which one you prefer is mostly a matter of aesthetics.

280

Creating Sample Data

DB2 UDB/V8.1 Cookbook ©

WITH TEMP1 (CO) AS
(VALUES (0)
UNION ALL
SELECT CO0+10
FROM TEMP1
WHERE C0+10 < 100
)
SELECT CO
,CO0+1 AS C1, C0+2 AS C2, C0+3 AS C3, CO+4 AS C4, C0+5 AS C5
,C0+6 AS C6, C0+7 AS C7, C0+8 AS C8, CO+9 AS C9
FROM TEMP1 ;

Figure 759, Recursive QL used to make an array of numbers (2 of 2)

Cosine vs. Degree - Table of Values

Create areport that shows the cosine of every angle between zero and ninety degrees (accu-
rate to one tenth of adegree).

WITH TEMP1 (DEGREE) AS
(VALUES SMALLINT (0)

UNION ALL

SELECT SMALLINT (DEGREE + 1)
FROM TEMP1

WHERE DEGREE < 89

)

SELECT DEGREE

,DEC (COS (RADIANS (DEGREE + 0.0)),4,3) AS POINTO
,DEC (COS (RADIANS (DEGREE + 0.1)),4,3) AS POINT1
,DEC (COS (RADIANS (DEGREE + 0.2)),4,3) AS POINT2
,DEC (COS (RADIANS (DEGREE + 0.3)),4,3) AS POINT3
,DEC (COS (RADIANS (DEGREE + 0.4)),4,3) AS POINT4
,DEC (COS (RADIANS (DEGREE + 0.5)),4,3) AS POINT5S
,DEC (COS (RADIANS (DEGREE + 0.6)),4,3) AS POINT6
,DEC (COS (RADIANS (DEGREE + 0.7)),4,3) AS POINT7?
,DEC (COS (RADIANS (DEGREE + 0.8)),4,3) AS POINTS8
,DEC (COS (RADIANS (DEGREE + 0.9)),4,3) AS POINT9

FROM TEMP1;
Figure 760, QL to make Cosine vs. Degree table

The answer (part of) follows:
DEGREE POINTO POINT1 POINT2 POINT3 POINT4 POINT5 POINT6 POINT7 etc....

0 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999
1 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999
2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
3 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.998
4 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.997
5 0.997 0.997 0.997 0.997 0.997 0.996 0.996 0.996
6 0.994 0.994 0.994 0.993 0.993 0.993 0.993 0.993
7 0.992 0.992 0.992 0.991 0.991 0.991 0.991 0.990
8 0.990 0.990 0.989 0.989 0.989 0.989 0.988 0.988
88 0.052 0.050 0.048 0.047 0.045 0.043 0.041 0.040
89 0.034 0.033 0.031 0.029 0.027 0.026 0.024 0.022

Figure 761, Cosine vs. Degree SQL output

Make Reproducible Random Data

So far, all we have doneis create different sets of fixed data. These are usually not suitable
for testing purposes because they are too consistent. To mess things up a bit we need to use
the RAND function which generates random numbers in the range of zero to one inclusive. In
the next example we will get a (reproducible) list of five random numeric values:

Fun with SQL 281

Graeme Birchall ©

WITH TEMP1 (S1, R1) AS ANSWER
(VALUES (0, RAND(1)) ============
UNION ALL SEQ# RAN1
SELECT S1+1, RAND() S
FROM TEMP1 0.001
WHERE S1+1 < 5 1 0.563
) 2 0.193
SELECT SMALLINT (S1) AS SEQ# 3 0.808
,DECIMAL (R1,5,3) AS RAN1 4 0.585

FROM TEMP1;
Figure 762, Use RAND to create pseudo-random numbers

Theinitial invocation of the RAND function above is seeded with the value 1. Subsequent
invocations of the same function (in the recursive part of the statement) use the initial valueto
generate a reproducible set of pseudo-random numbers.

Using the GENERATE_UNIQUE function

With abit of data manipulation, the GENERATE_UNIQUE function can be used (instead of
the RAND function) to make suitably random test data. The are advantages and disadvantages
to using both functions:

e The GENERATE_UNIQUE function makes data that is always unique. The RAND func-
tion only outputs one of 32,000 distinct values.

e The RAND function can make reproducible random data, while the GENER-
ATE_UNIQUE function can not.

See the description of the GENERATE_UNIQUE function (see page 116) for an example of
how to use it to make random data.

Make Random Data - Different Ranges

There are several ways to mess around with the output from the RAND function: We can use
simple arithmetic to alter the range of numbers generated (e.g. convert from0to 10to O to
10,000). We can dter the format (e.g. from FLOAT to DECIMAL). Lastly, we can make
fewer, or more, distinct random values (e.g. from 32K distinct values down to just 10). All of
thisis done below:

WITH TEMP1 (S1, R1l) AS ANSWER
(VALUES (0, RAND(2)) ========================
UNION ALL SEQ# RAN2 RAN1 RAN3
SELECT S1+1, RAND() B T I ——— E—
FROM TEMP1 0 13 0.0013 0
WHERE S1+1 < 5 1 8916 0.8916 8
) 2 7384 0.7384 7
SELECT SMALLINT (S1) AS SEQ# 3 5430 0.5430 5
, SMALLINT (R1*10000) AS RAN2 4 8998 0.8998 8

,DECIMAL (R1,6,4) AS RANL
,SMALLINT (R1*10) AS RAN3
FROM TEMP1;

Figure 763, Make differing ranges of random numbers

Make Random Data - Different Flavours

The RAND function generates random numbers. To get random character data one has to
convert the RAND output into a character. There are several ways to do this. The first method
shown below uses the CHR function to convert anumber in the range: 65to 90 into the AS-
Cll equivalent: "A" to "Z". The second method uses the CHAR function to translate a number
into the character equivalent.

282 Creating Sample Data

DB2 UDB/V8.1 Cookbook ©

WITH TEMP1 (S1, R1) AS ANSWER

(VALUES (0, RAND(2)) ===================

UNION ALL SEQ# RAN2 RAN3 RAN4

SELECT S1+1, RAND() mme mmmm ame oo
FROM TEMP1 0 65 A 65
WHERE S1+1 < 5 1 88 X 88
) 2 84 T 84
SELECT SMALLINT (S1) AS SEQ# 3 79 O 79
, SMALLINT (R1*26+65) AS RAN2 4 88 X 88

, CHR (SMALLINT (R1*26+65)) AS RAN3
, CHAR (SMALLINT (R1*26) +65) AS RAN4
FROM TEMP1;

Figure 764, Converting RAND output from number to character

Make Random Data - Varying Distribution

In the real world, there is atendency for certain data values to show up much more frequently
than others. Likewise, separate fields in a table usually have independent semi-random data
distribution patterns. In the next statement we create four independently random fields. The
first has the usual 32K distinct values evenly distributed in the range of zero to one. The sec-
ond is the same, except that it has many more distinct values (approximately 32K squared).
The third and fourth have random numbers that are skewed towards the low end of the range
with average values of 0.25 and 0.125 respectively.

WITH TEMP1 (S1,R1,R2,R3,R4) AS ANSWER

(VALUES (0 ————————————————————————————=c
,RAND (2) S# RAN1 RAN2 RAN3 RAN4
,RAND () + (RAND () /1E5) == mmmmmm mmmmmm e

,RAND () * RAND () 0 1373 169599 182618 215387

,RAND () * RAND()* RAND()) 1 326700 445273 539604 357592
UNION ALL 2 909848 981267 7140 81553
SELECT S1 + 1 3 454573 577320 309318 166436
4

RAND (875942 257823 207873 9628

I’)

,RAND () + (RAND () /1E5)
,RAND () * RAND ()
,RAND () * RAND () * RAND ()

FROM TEMP1
WHERE S1 + 1 < 5
)
SELECT SMALLINT (S1) AS S#
, INTEGER (R1*1E6) AS RAN1l, INTEGER(R2*1E6) AS RAN2
, INTEGER (R3*1E6) AS RAN3, INTEGER(R4*1E6) AS RAN4
FROM TEMP1;

Figure 765, Create RAND data with different distributions

Make Test Table & Data

So far, al we have donein this chapter is use SQL to select sets of rows. Now we shall create
a Production-like table for performance testing purposes. We will then insert 10,000 rows of
suitably lifelike test datainto the table. The DDL, with constraints and index definitions, fol-
lows. The important things to note are:

e The EMP# and the SOCSEC# must both be unique.

e TheJOB_FTN, FST_NAME, and LST_NAME fields must al be non-blank.
e The SOCSEC# must have a special format.

e The DATE_BN must be greater than 1900.

Severd other fields must be within certain numeric ranges.

Fun with SQL 283

CREATE TABLE PERSONNEL

(EMP# INTEGER NOT NULL
, SOCSEC# CHAR(11) NOT NULL
,JOB_FTN CHAR (4) NOT NULL
, DEPT SMALLINT NOT NULL
, SALARY DECIMAL(7,2) NOT NULL
,DATE BN DATE NOT NULL

,FST NAME VARCHAR (20)
,LST_NAME VARCHAR (20)
PRIMARY KEY (EMP#)

, CONSTRAINT PEX1
, CONSTRAINT PEO1
, CONSTRAINT PE02
, CONSTRAINT PEO3
, CONSTRAINT PE04
, CONSTRAINT PEO5
, CONSTRAINT PE06
, CONSTRAINT PEQ7
, CONSTRAINT PE08
, CONSTRAINT PE09
, CONSTRAINT PE10
COMMIT;

CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK

WITH DEFAULT

(EMP# > 0)
(LOCATE (* ', SOCSECH#) = 0)
(LOCATE (" -’ ,SOCSEC#,1) = 4)
(LOCATE ('’ -’ ,SOCSECH#,5) = 7)
(JOB_FTN <> ")
(DEPT BETWEEN 1 AND 99)
(SALARY BETWEEN 0 AND 99999)
(FST_NAME <> ")
(LST NAME <> ")

(DATE_BN >=

1900-01-01"));

CREATE UNIQUE INDEX PEX2 ON PERSONNEL (SOCSECH#) ;
CREATE UNIQUE INDEX PEX3 ON PERSONNEL (DEPT, EMP#) ;

COMMIT;

Figure 766, Production-like test table DDL

Now we shall populate the table. The SQL shall be described in detail |atter. For the moment,
note the four RAND fields. These contain, independently generated, random numbers which
are used to populate the other data fields.

INSERT INTO PERSONNEL
WITH TEMP1 (S1,R1,R2,R3,R4) AS

(VALUES (0
RAND (2)

:RAND()+(RAND()/1E5)
,RAND () * RAND ()
,RAND () * RAND () * RAND())

UNION ALL

SELECT S1 + 1
, RAND ()
,RAND () +
,RAND () *
,RAND () *

FROM TEMP1

RAND (

)

(RAND () /1E5)

RAND () * RAND ()

WHERE S1 < 10000

)

SELECT 100000 + S1

, SUBSTR (DIGITS (INT (R2*988+10)), 8) -
SUBSTR (DIGITS (INT (R1*88+10)),9) =
TRANSLATE (SUBSTR (DIGITS (S1),7), ' 98734501

, CASE

WHEN INT (R4*9
WHEN INT (R4*9
WHEN INT (R4*9
WHEN INT (R4*9
ELSE 'WKR’

END

, INT (R3*98+1)
,DECIMAL (R4*99999,7,2)

,DATE ('1930-01-01")

284

)
)
)
)

> 7 THEN ’'MGR’
> 5 THEN 'SUPR’
> 3 THEN 'PGMR’
> 1 THEN 'SEC’

+ INT (50- (R4*50)) YEARS

+ INT(R4*11) MONTHS
+ INT(R4*27) DAYS

Figure 767, Production-like test table INSERT (part 1 of 2)

Graeme Birchall ©

26’,'0123456789")

Creating Sample Data

DB2 UDB/V8.1 Cookbook ©

,CHR (INT (R1*26+65)

CHR (INT (R4*26+97)

,CHR (INT (R2*26+65))

TRANSLATE (CHAR (INT (R2*1E7)) , ‘aaeeiibmty’, ' 0123456789")
FROM TEMP1;

Figure 768, Production-like test table INSERT (part 2 of 2)

Some sample data follows:

CHR (INT (R2*%26+97)) CHR (INT (R3%*26+97)) | |
CHR (INT (R3*10+97)) CHR (INT (R3*11+97))

EMP# SOCSEC# JOB_ DEPT SALARY DATE_ BN F_NME L NME

100000 484-10-9999 WKR 47 13.63 01/01/1979 Ammaef Mimytmbi
100001 449-38-9998 SEC 53 35758.87 04/10/1962 Ilojff Liiiemea
100002 979-90-9997 WKR 1 8155.23 01/03/1975 Xzacaa Zytaebma
100003 580-50-9993 WKR 31 16643.50 02/05/1971 Lpiedd Pimmeeat
100004 264-87-9994 WKR 21 962.87 01/01/1979 Wgfacc Geimteei
100005 661-84-9995 WKR 19 4648.38 01/02/1977 Wrebbc Rbiybeet
100006 554-53-9990 WKR 8 375.42 01/01/1979 Mobaaa Oiiaiaia
100007 482-23-9991 SEC 36 23170.09 03/07/1968 Emjgdd Mimtmamb
100008 536-41-9992 WKR 6 10514.11 02/03/1974 Jnbcaa Nieebayt

Figure 769, Production-like test table, Sample Output

In order to illustrate some of the tricks that one can use when creating such data, each field
above was calculated using a different schema:

o The EMP#isasimple ascending number.

o The SOCSECH# field presented three problems: It had to be unique, it had to be random
with respect to the current employee number, and it is a character field with special lay-
out congtraints (see the DDL on page 284).

e Tomakeit random, thefirst five digits were defined using two of the temporary random
number fields. To try and ensure that it was unique, the last four digits contain part of the
employee number with some digit-flipping done to hide things. Also, the first random
number used is the one with lots of unique values. The special formatting that thisfield
required is addressed by making everything in pieces and then concatenating.

e TheJOB FUNCTION is determined using the fourth (highly skewed) random number.
This ensures that we get many more workers than managers.

e TheDEPT isderived from another, somewhat skewed, random number with a range of
values from one to ninety nine.

e The SALARY isderived using the same, highly skewed, random number that was used
for the job function calculation. This ensures that theses two fields have related values.

e TheBIRTH DATE is arandom date value somewhere between 1930 and 1981.

e TheFIRST NAME isderived using seven independent invocation of the CHR function,
each of which is going to give a somewhat different result.

e TheLAST NAME is(mostly) made by using the TRANSLATE function to convert a

large random number into a corresponding character value. The output is skewed towards

some of the vowels and the lower-range characters during the trandation.

Fun with SQL 285

Graeme Birchall ©

Time-Series Processing

The following table holds data for a typical time-series application. Observeisthat each row
has both a beginning and ending date, and that there are three cases where there isa gap be-
tween the end-date of one row and the begin-date of the next (with the same key).

CREATE TABLE TIME_SERIES

(KYY CHAR (03) NOT NULL
,BGN_DT DATE NOT NULL
,END DT DATE NOT NULL

,CONSTRAINT TSX1 PRIMARY KEY (KYY,BGN_DT)
,CONSTRAINT TSC1l CHECK (KYY <> ')

, CONSTRAINT TSC2 CHECK (BGN DT <= END DT));
COMMIT;

INSERT INTO TIME_ SERIES VALUES
("AAA’,71995-10-01",’1995-10-04"),
("AAA',"1995-10-06",71995-10-06"),
("AAA’,"1995-10-07",71995-10-07"),
("AAA','1995-10-15",’1995-10-19"),
("BBB’,"1995-10-01",’1995-10-01"),
("BBB’,’1995-10-03’,’1995-10-03") ;

Figure 770, Sample Table DDL - Time Series

Find Overlapping Rows

We want to find any cases where the begin-to-end date range of one row overlaps another
with the same key value. In our test database, this query will return no rows.

The following diagram illustrates what we are trying to find. The row at the top (shown asa
bold line) is overlapped by each of the four lower rows, but the nature of the overlap differsin
each case.

} time oW }

< >

ROW
+—> ROW

+«——» I ROW I
ROW

P

Figure 771, Overlapping Time-Series rows - Definition

»
Ll

WARNING: When writing SQL to check overlapping data ranges, make sure that all pos-
sible types of overlap (see diagram above) are tested. Some simpler SQL statements
work with some flavors of overlap, but not others.

The relevant SQL follows. When reading it, think of the "A" table as being the double line
above and "B" table as being the four overlapping rows shown as single lines.

SELECT KYY ANSWER
,BGN_DT —========
,END DT <O YOwWS>

FROM TIME SERIES A
WHERE EXISTS

(SELECT *
FROM TIME_ SERIES B
WHERE A.KYY = B.KYY

AND A.BGN DT <> B.BGN DT
AND (A.BGN DT BETWEEN B.BGN DT AND B.END DT
OR B.BGN DT BETWEEN A.BGN DT AND A.END DT))
ORDER BY 1,2;

Figure 772, Find overlapping rows in time-series

286 Time-Series Processing

DB2 UDB/V8.1 Cookbook ©

The first predicate in the above sub-query joins the rows together by matching key value. The
second predicate makes sure that one row does not match against itself. The final two predi-

cates look for overlapping date ranges.

The above query relies on the sample table data being valid (as defined by the CHECK con-
straintsin the DDL on page 286. This means that the END_DT is aways greater than or equal
tothe BGN_DT, and each KYY, BGN_DT combination is unique.

Find Gaps in Time-Series

We want to find all those casesin the TIME_SERIES table when the ending of one row is not
exactly one day less than the beginning of the next (if there is anext). The following query
will answer this question. It consists of both ajoin and a sub-query. In the join (which is done
first), we match each row with every other row that has the same key and aBGN_DT that is
more than one day greater than the current END_DT. Next, the sub-query excludes from the

result those join-rows where there is an intermediate third row.

SELECT A.KYY

TIME SERIES

JALBGN DT mmmmmmmmmmmmeo oo +
,A.END DT KYY|BGN_DT END DT
,B.BGN_DT [
,B.END DT AAA[1995-10-01|1995-10-04
,DAYS (B.BGN_DT) - AAA[1995-10-06(1995-10-06
DAYS (A.END_DT) AAA|1995-10-07[1995-10-07
AS DIFF AAA[1995-10-15(1995-10-19
FROM TIME_ SERIES A BBB|1995-10-01[1995-10-01
,TIME_SERIES B BBB|1995-10-03[1995-10-03
WHERE A.KYY = B.KYY hm e +
AND A.END DT < B.BGN_DT - 1 DAY
AND NOT EXISTS
(SELECT *
FROM TIME_ SERIES Z
WHERE Z.KYY = A.KYY
AND Z.KYY = B.KYY
AND Z.BGN DT > A.BGN DT
AND Z.BGN DT < B.BGN DT)
ORDER BY 1,2;
Figure 773, Find gap in Time-Series, SQL
KEYCOL BGN_DT END DT BGN_DT END DT DIFF
AAR 10/01/1995 10/04/1995 10/06/1995 10/06/1995 2
ARA 10/07/1995 10/07/1995 10/15/1995 10/19/1995 8
BBB 10/01/1995 10/01/1995 10/03/1995 10/03/1995 2

Figure 774, Find gap in Time-Series, Answer

WARNING: If there are many rows per key value, the above SQL will be very inefficient.
This is because the join (done first) does a form of Cartesian Product (by key value) mak-
ing an internal result table that can be very large. The sub-query then cuts this temporary
table down to size by removing results-rows that have other intermediate rows.

Instead of looking at those rows that encompass a gap in the data, we may want to look at the
actual gap itself. To this end, the following SQL differs from the prior in that the SELECT list
has been modified to get the start, end, and duration, of each gap.

Fun with SQL 287

Graeme Birchall ©

SELECT A.KYY TIME_SERIES
,A.END DT + 1 DAY oo mmmm e mmmmm o +
AS BGN_GAP KYY BGN_DT END DT
,B.BGN_DT - 1 DAY e e B
AS END_GAP AAA|1995-10-01({1995-10-04
, (DAYS (B.BGN _DT) - AAA|1995-10-06(1995-10-06
DAYS (A.END_DT) - 1) AAA|1995-10-07(1995-10-07
AS GAP_SIZE AAA|1995-10-15({1995-10-19
FROM TIME_SERIES A BBB|1995-10-01{1995-10-01
, TIME_SERIES B BBB|1995-10-03|1995-10-03

WHERE A.KYY = B.KYY Fmmmmm e m - +
AND A.END DT < B.BGN DT - 1 DAY
AND NOT EXISTS
(SELECT *
FROM TIME_SERIES Z
WHERE Z.KYY = A.KYY
AND Z.KYY = B.KYY
AND Z.BGN DT > A.BGN DT
AND Z.BGN DT < B.BGN DT)

ORDER BY 1,2;

Figure 775, Find gap in Time-Series, SQL

KEYCOL BGN_GAP END_GAP GAP_SIZE
AAA 10/05/1995 10/05/1995 1
AAA 10/08/1995 10/14/1995 7
BBB 10/02/1995 10/02/1995 1

Figure 776, Find gap in Time-Series, Answer

Show Each Day in Gap

Imagine that we wanted to see each individual day in a gap. The following statement does this
by taking the result obtained above and passing it into a recursive SQL statement which then
generates additional rows - one for each day in the gap after thefirst.

WITH TEMP TIME_SERIES
(KYY, GAP DT, GSIZE) AS e +
(SELECT A.KYY KYY|BGN_DT END DT
,A.END DT + 1 DAY R e I
, (DAYS (B.BGN_DT) - AAA|1995-10-01[1995-10-04
DAYS (A.END DT) - 1) AAA|1995-10-06[1995-10-06
FROM TIME SERIES A AAA|1995-10-07[1995-10-07
,TIME_ SERIES B AAA|1995-10-15[1995-10-19
WHERE A.KYY = B.KYY BBB|1995-10-01{1995-10-01
AND A.END DT < B.BGN DT - 1 DAY BBB|1995-10-03|1995-10-03
AND NOT EXISTS L T T +
(SELECT *
FROM TIME_SERIES Z
WHERE Z.KYY = A.KYY
AND Z.KYY = B.KYY ANSWER
AND Z.BGN DT > A.BGN DT —===============—==—=====
AND Z.BGN DT < B.BGN DT) KEYCOL GAP DT GSIZE
UNION ALL e e e
SELECT KYY AAA 10/05/1995 1
,GAP DT + 1 DAY AAA 10/08/1995 7
,GSIZE - 1 AAA 10/09/1995 6
FROM TEMP AAA 10/10/1995 5
WHERE GSIZE > 1 AAA 10/11/1995 4
) AAA 10/12/1995 3
SELECT * AAA 10/13/1995 2
FROM TEMP AAA 10/14/1995 1
ORDER BY 1,2; BBB 10/02/1995 1

Figure 777, Show each day in Time-Series gap

288 Time-Series Processing

DB2 UDB/V8.1 Cookbook ©

__|]
Retaining a Record

In this section, we are going to look at arather complex table/view/trigger schema that will
enable us to offer several features that are often asked for:

¢ Record every change to the datain an application (auditing).
e Show the state of the data, asit was, at any point in the past (historical analysis).
o Follow the sequence of changes to any item (e.g. customer) in the database.

e Do "what if" analysis by creating virtual copies of the real world, and then changing them
as desired, without affecting the real-world data.

NOTE: The key sample code needed to illustrate the above concepts will be described be-
low. A more complete example is available from my website.

Recording Changes

Below isavery simple table that records relevant customer data:
CREATE TABLE customer

(cust# INTEGER NOT NULL
,cust_name CHAR (10)
,cust _mgr CHAR(10)

,PRIMARY KEY (cust#)) ;
Figure 778, Customer table

One can insert, update, and delete rows in the above table. The latter two actions destroy data,
and so are incompatible with using thistable to see dl (prior) states of the data.

One way to record all states of the abovetableisto create arelated customer-history table,
and then to use triggers to copy all changes in the main table to the history table. Below is one
example of such ahistory table:

CREATE TABLE customer his

(cust# INTEGER NOT NULL
,cust_name CHAR (10)

,cust_mgr CHAR (10)

,cur_ts TIMESTAMP NOT NULL
,cur_actn CHAR (1) NOT NULL
,Cur_user VARCHAR (10) NOT NULL
,prv_cust# INTEGER

,prv_ts TIMESTAMP

,PRIMARY KEY (cust#,cur _ts));

CREATE UNIQUE INDEX customer his x1 ON customer his
(cust#, prv_ts, cur_ts);

Figure 779, Customer-history table

NOTE: The secondary index shown above will make the following view processing, which
looks for a row that replaces the current, much more efficient.

Table Design
The history table has the same fields as the original Customer table, plus the following:

e CUR-TS: The current timestamp of the change.
e CUR-ACTN: Thetype of change (i.e. insert, update, or delete).
e CUR-USER: The user who made the change (for auditing purposes).

Fun with SQL 289

Graeme Birchall ©

e PRV-CUST#: The previous customer number. This field enables one follow the sequence
of changesfor a given customer. The valueisnull if the action is an insert.

e PRV-TS: Thetimestamp of the last time the row was changed (null for inserts).

Observe that this history table does not have an end-timestamp. Rather, each row points back
to the onethat it (optionally) replaces. One advantage of such aschemais that there can be a
many-to-one relationship between any given row, and the row, or rows, that replace it. When
we add versions into the mix, thiswill become important.

Triggers

Below isthe relevant insert trigger. It replicates the new customer row in the history table,
along with the new fields. Observe that the two "previous"' fields are set to null:

CREATE TRIGGER customer ins
AFTER
INSERT ON customer
REFERENCING NEW AS nnn
FOR EACH ROW
MODE DB2SQL
INSERT INTO customer his VALUES
(nnn.cust#
,Ann.cust_name
,nnn.cust_mgr
, CURRENT TIMESTAMP
, rT
,USER
, NULL
,NULL) ;

Figure 780, Insert trigger

Below is the update trigger. Because the customer table does not have arecord of when it was
last changed, we have to get this value from the history table - using a sub-query to find the
most recent row:

CREATE TRIGGER customer upd
AFTER
UPDATE ON customer
REFERENCING NEW AS nnn
OLD AS ooo
FOR EACH ROW
MODE DB2SQL
INSERT INTO customer his VALUES
(nnn.cust#
,Ann.cust_name
,nnn.cust_mgr
, CURRENT TIMESTAMP
, 'y’
, USER
,000.cust#
, (SELECT MAX (cur_ts)
FROM customer his hhh
WHERE ooo.cust# = hhh.cust#));

Figure 781, Update trigger

Below isthe delete trigger. It is similar to the update trigger, except that the action is different
and we are under no obligation to copy over the old non-key-data columns - but we can if we
wish:

290 Retaining a Record

DB2 UDB/V8.1 Cookbook ©

CREATE TRIGGER customer_ del
AFTER
DELETE ON customer
REFERENCING OLD AS 00O
FOR EACH ROW
MODE DB2SQL
INSERT INTO customer his VALUES
(ooco.cust#
, NULL
, NULL
, CURRENT TIMESTAMP
,’D’
,USER
,000.cust#
, (SELECT MAX (cur_ts)
FROM customer his hhh
WHERE ooo.cust# = hhh.cust#));

Figure 782, Delete trigger
Views

We are now going to define aview that will let the user query the customer-history table - as
if it were the ordinary customer table, but to look at the data asit was at any point in the past.
To enable usto hide all the nasty SQL that is required to do this, we are going to ask that the
user first enter arow into a profile table that has two columns:

e Theuser'sDB2 USER value.
e Thepointin time at which the user wants to see the customer data.

Here is the profile table definition:

CREATE TABLE profile

(user_id VARCHAR (10) NOT NULL

,bgn_ts TIMESTAMP NOT NULL DEFAULT ’9999-12-31-24.00.00'
, PRIMARY KEY (user id));

Figure 783, Profile table

Below is aview that displays the customer data, as it was at the point in time represented by
the timestamp in the profile table. The view shows all customer-history rows, aslong as:

e Theaction was not adelete.
e The current-timestamp is <= the profile timestamp.

e There does not exist any row that "replaces’ the current row (and that row has a current
timestamp that is <= to the profile timestamp).

Now for the code:

CREATE VIEW customer vw AS
SELECT hhh.~*

,ppp.bgn_ts
FROM customer his hhh
,profile jsjo)el
WHERE ppp.user id = USER

AND hhh.cur ts <= ppp.bgn_ts
AND hhh.cur actn <> ‘D’
AND NOT EXISTS
(SELECT *
FROM customer_his nnn
WHERE nnn.prv_cust# = hhh.cust#
AND nnn.prv_ts = hhh.cur_ts
AND nnn.cur ts <= ppp.bgn ts);

Figure 784, View of Customer history

Fun with SQL 291

Graeme Birchall ©

The above sample schema shows just one table, but it can easily be extended to support every
table isavery large application. One could even write some scripts to make the creation of
the history tables, triggers, and views, al but automatic.

Limitations

The above schema has the following limitations:
o Every datatable hasto have a unique key.
e Thecost of every insert, update, and delete, is essentially doubled.

o Dataitemsthat are updated very frequently (e.g. customer daily balance) may perform
poorly when queried because many rows will have to be processed in order to find the
one that has not been replaced.

e Theview usesthe USER special register, which may not be unique per actual user.

Multiple Versions of the World

The next design is similar to the previous, but we are also going to allow users to both see and
change theworld - asit wasin the past, and as it is now, without affecting the real-world data.
These extra features require a much more complex design:

o We cannot use a base table and arelated history table, as we did above. Instead we have
just the latter, and use both views and INSTEAD OF triggers to make the users think that
they are redlly seeing and/or changing the former.

e Weneed aversion table - to record when the data in each version (i.e. virtual copy of the
real world) separates from the real world data.

o Dataintegrity features, like referential integrity rules, have to be hand-coded in triggers,
rather that written using standard DB2 code.

Version Table
The following table has one row per version created:

CREATE TABLE version

(vrsn INTEGER NOT NULL
,vrsn_bgn ts TIMESTAMP NOT NULL

, CONSTRAINT versionl CHECK(vrsn >= 0)

, CONSTRAINT version2 CHECK(vrsn < 1000000000)
, PRIMARY KEY (vrsn)) ;

Figure 785, Version table
The following rules apply to the above:
e Each version has a unique number. Up to one billion can be created.

e Each version must have a begin-timestamp, which records at what point in time it sepa-
rates from the real world. This value must be <= the current time.

¢ Rows cannot be updated or deleted in thistable - only inserted. Thisruleis necessary to
ensure that we can always trace all changes - in every version.

e Therea-world is deemed to have a version number of zero, and a begin-timestamp value
of high-values.

292 Retaining a Record

DB2 UDB/V8.1 Cookbook ©

Profile Table

The following profile table has one row per user (i.e. USER special register) that reads from
or changes the data tables. It records what version the user is currently using (note: the ver-
sion timestamp data is maintained using triggers):

CREATE TABLE profile

(user_id VARCHAR (10) NOT NULL
,vrsn INTEGER NOT NULL
,vrsn_bgn ts TIMESTAMP NOT NULL

, CONSTRAINT profilel FOREIGN KEY (vrsn)
REFERENCES version (vrsn)
ON DELETE RESTRICT
,PRIMARY KEY (user id));

Figure 786, Profile table
Customer (data) Table

Below isatypica datatable. This one holds customer data:

CREATE TABLE customer his

(cust# INTEGER NOT NULL
,cust_name CHAR (10) NOT NULL
,cust_mgr CHAR (10)

,cur_ts TIMESTAMP NOT NULL
,Cur_vrsn INTEGER NOT NULL
,cur_actn CHAR (1) NOT NULL
,cur_user VARCHAR (10) NOT NULL
,Prv_cust# INTEGER

,prv_ts TIMESTAMP

,Prv_vrsn INTEGER

, CONSTRAINT customerl FOREIGN KEY (cur_ vrsn)
REFERENCES version (vrsn)
ON DELETE RESTRICT
, CONSTRAINT customer2 CHECK(cur_ actn IN ('I’,’U’,’'D’))
, PRIMARY KEY (cust#,cur vrsn,cur ts));
CREATE INDEX customer x2 ON customer his
(prv_cust#
,prv_ts
,prv_vrsn) ;

Figure 787, Customer table
Note the following:
e Thefirst three fields are the only ones that the user will see.

e Theuserswill never update thistable directly. They will make changesto aview of the
table, which will then invoke INSTEAD OF triggers.

o Theforeign key check (on version) can be removed - if it is forbidden to ever delete any
version. This check stops the removal of versions that have changed data.

e Theconstraint on CUR_ACTN isjust adouble-check - to make sure that the triggers that
will maintain this table do not have an error. It can be removed, if desired.

e Thesecondary index will make the following view more efficient.

The above table has the following hidden fields:

e CUR-TS: The current timestamp of the change.

e CUR-VRSN: The version in which change occurred. Zero implies redlity.
e CUR-ACTN: Thetype of change (i.e. insert, update, or delete).

Fun with SQL 293

Graeme Birchall ©

e CUR-USER: The user who made the change (for auditing purposes).

e PRV-CUST#: The previous customer number. Thisfield enables one follow the sequence
of changesfor a given customer. The valueis null if the action is an insert.

e PRV-TS: Thetimestamp of the last time the row was changed (null for inserts).
e PRV-VRNS: The version of the row being replaced (null for inserts).
Views

The following view displays the current state of the datain the above customer table - based
on the version that the user is currently using:

CREATE VIEW customer vw AS

SELECT *
FROM customer his hhh
,profile jsjo)e
WHERE ppp.user id = TUSER
AND hhh.cur_actn <> 'D’
AND ((ppp.vrsn = 0
AND hhh.cur vrsn = 0)
OR (ppp.vrsn > 0
AND hhh.cur_ vrsn = 0
AND hhh.cur ts < ppp.vrsn _bgn ts)
OR (ppp.vrsn > 0
AND hhh.cur vrsn = ppp.vrsn))
AND NOT EXISTS
(SELECT *
FROM customer_his nnn
WHERE nnn.prv_cust# hhh.cust#
AND nnn.prv_ts hhh.cur_ts

AND nnn.prv_vrsn

AND ((ppp.vrsn

AND nnn.cur_vrsn
OR (ppp.vrsn

AND nnn.cur_vrsn

AND nnn.cur_ts
OR (ppp.vrsn

AND nnn.cur_vrsn

Figure 788, Customer view - 1 of 2

hhh.cur vrsn

ppp.vrsn_bgn ts)
0

LV 2A N | VAR | A | O | | R
o

ppp.vrsn))) ;

The above view shows all customer rows, aslong as.
e Theaction was not adelete.
e Theversioniseither zero (i.e. redlity), or the user’s current version.

o [f theversion isredlity, then the current timestamp is < the version begin-timestamp (as
duplicated in the profile table).

e There does not exist any row that "replaces’ the current row (and that row has a current
timestamp that is <= to the profile (version) timestamp).

To make things easier for the users, we will create another view that sits on top of the above
view. This one only shows the business fields:

CREATE VIEW customer AS

SELECT cust#
,cust_name
,cust_mgr

FROM customer vw;

Figure 789, Customer view - 2 of 2

294 Retaining a Record

DB2 UDB/V8.1 Cookbook ©

All inserts, updates, and deletes, are done against the above view, which then propagates
down to the first view, whereupon they are trapped by INSTEAD OF triggers. The changes
are then applied (viathe triggers) to the underlying tables.

Insert Trigger

Thefollowing INSTEAD OF trigger traps all inserts to the first view above, and then applies
the insert to the underlying table - with suitable modifications:

CREATE TRIGGER customer ins
INSTEAD OF
INSERT ON customer vw
REFERENCING NEW AS nnn
FOR EACH ROW
MODE DB2SQL
INSERT INTO customer his VALUES
(nnn.cust#
,Ann.cust_name
,Ann.cust_mgr
, CURRENT TIMESTAMP
, (SELECT vrsn
FROM profile
WHERE user_id = USER)
, CASE
WHEN 0 < (SELECT COUNT (*)
FROM customer
WHERE cust# = nnn.cust#)
THEN RAISE_ERROR(’71001’,’ERROR: Duplicate cust#’)
ELSE 'I’
END
, USER
, NULL
, NULL
,NULL) ;

Figure 790, Insert trigger

Observe the following:

e Thebasic customer datais passed straight through.

e The current timestamp is obtained from DB2.

e Thecurrent version is aobtained from the user’s profile-table row.

e A check isdoneto seeif the customer number is unigue. One cannot use indexes to en-
force such rules in this schema, so one has to code accordingly.

e Thepreviousfieldsare al set to null.
Update Trigger

The following INSTEAD OF trigger traps all updates to the first view above, and turns them
into an insert to the underlying table - with suitable modifications:

CREATE TRIGGER customer upd
INSTEAD OF
UPDATE ON customer vw
REFERENCING NEW AS nnn
OLD AS ooo
FOR EACH ROW
MODE DB2SQL
INSERT INTO customer his VALUES
(nnn.cust#

Figure 791, Update trigger, part 1 of 2

Fun with SQL 295

Graeme Birchall ©

,Ann.cust_name

,nnn.cust_mgr

, CURRENT TIMESTAMP

,000.Vrsn

, CASE
WHEN nnn.cust# <> ooo.cust#
THEN RAISE_ERROR(’72001’,’ERROR: Cannot change cust#’)
ELSE 'U’

END

,000.user_id

,000.cust#

,000.cur_ts

,000.Ccur_vrsn) ;

Figure 792, Update trigger, part 2 of 2

In this particular trigger, updates to the customer number (i.e. business key column) are not
allowed. Thisruleis not necessary, it simply illustrates how one would write such code if one
S0 desired.

Delete Trigger

Thefollowing INSTEAD OF trigger traps all deletesto the first view above, and turns them
into an insert to the underlying table - with suitable modifications:
CREATE TRIGGER customer_del
INSTEAD OF
DELETE ON customer_ vw
REFERENCING OLD AS 00O
FOR EACH ROW
MODE DB2SQL
INSERT INTO customer his VALUES
(ooco.cust#
,000.cust_name
,000.cust_mgr
, CURRENT TIMESTAMP
, 000.VIrsn
. 'D’
,000.user_id
,000.cust#
,000.cur_ts
,000.Ccur_vrsn) ;

Figure 793, Delete trigger

In Summary

The only thing that the user need see in the above schemain the simplified (second) view that
lists the business data columns. They would insert, update, and delete the rows in this view as
if they were working on areal table. Under the covers, the relevant INSTEAD OF trigger
would convert whatever they did into a suitable insert to the underlying table.

This schema supports the following:

e Todo"what if* analysis, al one need do isinsert a new row into the version table - with
abegin timestamp that is the current time. Thisinsert creates avirtua copy of every table
in the application, which one can then update as desired.

e Todo historical analysis, one simply creates a version with a begin-timestamp that is at
some point in the past. Up to one billion versions are currently supported.

e To switch between versions, al one need do is update one's row in the profile table.

e One can userecursive SQL (not shown here) to follow the sequence of changes to any
particular item, in any particular version.

296 Retaining a Record

DB2 UDB/V8.1 Cookbook ©

This schema has the following limitations:
e Every datatable hasto have a unique (business) key.

o Dataitemsthat are updated very frequently (e.g. customer daily balance) may perform
poorly when queried because many rows will have to be processed in order to find the
one that has not been replaced.

e Theviews usethe USER special register, which may not be unique per actual user.

o Dataintegrity features, like referential integrity rules, cascading del etes, and unique key
checks, have to be hand-coded in the INSTEAD OF triggers.

o Getting the triggersright is quite hard. If the target application has many tables, it might
be worthwhile to first create a suitable data-dictionary, and then write a script that gener-
ates as much of the code as possible.

Sample Code
See my website for more detailed sample code using the above application.

Other Fun Things

Convert Character to Numeric

The DOUBLE, DECIMAL, INTEGER, SMALLINT, and BIGINT functions call al be used
to convert a character field into its numeric equivalent:

WITH TEMP1 (Cl) AS ANSWER (numbers shortened)

(VALUES ’123 r,r 345 ', 567") —================================

SELECT C1 C1l DBL DEC SML INT
,DOUBLE (C1) AS DBL = = ==--= memmmmmmmes mmmem mm-- —---
,DECIMAL (C1,3) AS DEC 123 +1.2300E+2 123. 123 123
, SMALLINT (C1) AS SML 345 +3.4500E+2 345. 345 345
, INTEGER (C1) AS INT 567 +5.6700E+2 567. 567 567

FROM TEMP1;
Figure 794, Covert Character to Numeric - SQL

Not all numeric functions support all character representations of a number. The following
tableillustrates what's allowed and what’s not:

INPUT STRING COMPATIBLE FUNCTIONS

" 1234" DOUBLE, DECIMAL, INTEGER, SMALLINT, BIGINT
" 12.4" DOUBLE, DECIMAL

" 12E4" DOUBLE

Figure 795, Acceptable conversion values
Checking the Input

There are several ways to check that the input character string is a valid representation of a
number - before doing the conversion. One simple solution involves converting al digitsto
blank, then removing the blanks. If the result is not a zero length string, then the input must
have had a character other than a digit:

Fun with SQL 297

WITH TEMP1
SELECT C1
, TRANSLATE (C1,

(C1) AS (VALUES ‘

, LENGTH (LTRIM (TRANSLATE (C1, ’

FROM TEMP1;

Figure 796, Checking for non-digits

Graeme Birchall ©

123’,’456 ',’ 1 2',’ 33%',NULL)

’,71234567890") AS C2
’,71234567890"))) AS C3

ANSWER

c1 c2 C3

123 0

456 0

12 0

33% s 1

One can also write a user-defined scalar function to check for non-numeric input, which is
what is done below. This function returns "Y" if the following is true:

e Theinputisnot null.

e There are no non-numeric characters in the input.

e Theonly blanksin the input are to the left of the digits.

non

e Thereisonly one"+" or

e Thereisat least onedigit in the input.

Now for the code:
--#SET DELIMITER !

CREATE FUNCTION isnumeric (instr VARCHAR (40))

RETURNS CHAR (1)
BEGIN ATOMIC

sign, and it is next to the left-side blanks, if any.

IMPORTANT

This example

uses an "!"
as the stmt

DECLARE is_number CHAR(1) DEFAULT 'Y’; delimiter.
DECLARE bgn blank CHAR(1) DEFAULT 'Y’;
DECLARE found num CHAR (1) DEFAULT 'N’;
DECLARE found pos CHAR(1) DEFAULT 'N’;
DECLARE found neg CHAR (1) DEFAULT 'N’;
DECLARE found dot CHAR(1) DEFAULT 'N’;
DECLARE ctr SMALLINT DEFAULT 1;
IF instr IS NULL THEN
RETURN NULL;
END IF;
wloop:
WHILE ctr <= LENGTH (instr) AND
is_number = 'Y’
DO
--- ERROR CHECKS ---
IF SUBSTR(instr,ctr,1) NOT IN (' ',’'.’',’'+',’/-'/,'0","1","2"’
,'3",'4’,'5",'6",'7",'8",'9’) THEN
SET is number = 'N’;
ITERATE wloop;
END IF;
IF SUBSTR(instr,ctr,1) = ' ' AND
bgn blank = ’'N’ THEN

SET is_number =
ITERATE wloop;
END IF;

INI;

Figure 797, Check Numeric function, part 1 of 2

298

Other Fun Things

DB2 UDB/V8.1 Cookbook ©

END
IF

END
RET
END!

WITH T
(VALUE

SELECT

FROM

IF SUBSTR(instr,ctr,1)
found dot

SET is number = ’'N’;

ITERATE wloop;

END IF;

IF SUBSTR (instr,ctr,1)
(found neg
bgn blank

SET is_number = 'N’;

ITERATE wloop;

END IF;

IF SUBSTR (instr,ctr,1)
(found neg
bgn blank

SET is_number = 'N’;

ITERATE wloop;
END IF;

IF SUBSTR(instr,ctr,1)
SET found num = ’'Y’;

END IF;

IF SUBSTR(instr,ctr,1)
SET found dot = 'Y’;

END IF;

IF SUBSTR (instr,ctr,1)
SET found pos = 'Y’;

END IF;

IF SUBSTR(instr,ctr,1)
SET found neg = 'Y’;

END IF;

IF SUBSTR (instr,ctr,1)
SET bgn_blank = 'N’;

END IF;

SET ctr = ctr + 1;
WHILE wloop;

found_num = ‘N’ THEN

SET is number = 'N’;
IF;

URN is number;

EMP1 (C1l) AS

S ! 1237
,'+123.45"

, 456 !

, " 10 2 !

. -.23"

, ' ++12356"

,'.012349"

s 33%’

, NULL)

Cl

,isnumeric (C1)

, CASE

<>

WHEN isnumeric(C1l)
THEN DECIMAL(C1,10,6)

ELSE NULL
END
TEMP1!

’

’

ry’

[
ry
N’

’

ry’
N’

AND
THEN

(’O’,’l’,’2’,’3’,’4’

,’5’,’6’,’7’,’8’,’9’)

'+

’

’

1y

’

’

’

THEN

THEN

THEN

THEN

AS C1

AS C2

AS C3

Figure 798, Check Numeric function, part 2 of 2

Fun with SQL

THEN

1 Z22K2a<22KK

299

Graeme Birchall ©

Convert Number to Character

The CHAR and DIGITS functions can be used to convert aDB2 numeric field to a character
representation of the same, but as the following example demonstrates, both functions return
problematic output:

SELECT d sal

,CHAR (d_sal) AS d_chr
,DIGITS (d_sal) AS d _dgt
,1 sal
,CHAR (i_sal) AS i_chr
,DIGITS (i_sal) AS i_dgt
FROM (SELECT DEC(salary - 11000,6,2) AS d sal
, SMALLINT (salary - 11000) AS i sal
FROM staff

WHERE salary > 10000
AND salary < 12200
)AS xxX ANSWER

ORDER BY d_sal; —=====================—===================

-494.10 -0494.10 049410 -494 -494 00494
-12.00 -0012.00 001200 -12 -12 00012
508.60 0508.60 050860 508 508 00508

1009.75 1009.75 100975 1009 1009 01009

Figure 799, CHAR and DIGITSfunction usage

The DIGITS function discards both the sign indicator and the decimal point, while the CHAR
function output is (annoyingly) left-justified, and (for decimal data) has leading zeros. We can
do better.

Below are three user-defined functions that convert integer data from numeric to character,
displaying the output right-justified, and with asign indicator if negative. There is one func-
tion for each flavor of integer that is supported in DB2:

CREATE FUNCTION CHAR RIGHT (inval SMALLINT)
RETURNS CHAR(06)
RETURN RIGHT (CHAR(’’,06) CONCAT RTRIM(CHAR (inval)), 06) ;

CREATE FUNCTION CHAR RIGHT (inval INTEGER)
RETURNS CHAR (11)
RETURN RIGHT (CHAR(’’,11) CONCAT RTRIM (CHAR (inval)),11);

CREATE FUNCTION CHAR RIGHT (inval BIGINT)
RETURNS CHAR(20)
RETURN RIGHT (CHAR(’’,20) CONCAT RTRIM(CHAR (inval)),20);

Figure 800, User-defined functions - convert integer to character

Each of the above functions works the same way:

e First, convert the input number to character using the CHAR function.
e Next, usethe RTRIM function to remove the right-most blanks.

e Then, concatenate a set number of blanks to the left of the value. The number of blanks
appended depends upon the input type, which iswhy there are three separate functions.

e Finaly, usethe RIGHT function to get the right-most "n" characters, where "n" isthe
maximum number of digits (plus the sign indicator) supported by the input type.

The next example uses the first of the above functions:

300 Other Fun Things

DB2 UDB/V8.1 Cookbook ©

SELECT i_sal ANSWER
,CHAR RIGHT (i sal) AS i chr s====—=o=ooc
FROM (SELECT SMALLINT (salary - 11000) AS i_sal I SAL I_CHR
FROM statfe —eee ———-
WHERE salary > 10000 -494 -494
AND salary < 12200 -12 -12
)AS XXX 508 508
ORDER BY 1i_sal; 1009 1009

Figure 801, Convert SMALLINT to CHAR
Decimal Input

Creating a similar function to handle decimal input is alittle more complex. One problemis
that the CHAR function adds zeros to decimal data, which we don't want. But a more serious
problem is that there are many sizes and scales of decimal input, but we can only make one
function (with a given name) that must support al possible lengths and scales. Thisisimpos-
sible, so we will have to comprise as best we can.

Imagine that we have two decimal fields, one of which has alength and scale of (31,0), while
the other has alength and scale of (31,31). We cannot create a single function that will handle
both input types without either possibly running out of digits (in the first case), or loosing
some precision (in the second case).

NOTE: The fact that one can only have one user-defined function, with a given name, per

DB2 data type, presents a problem for all variable-length data types - notably character,

varchar, and decimal. For character and varchar data, one can address the problem, to

some extent, by using maximum length input and output fields. But decimal data has both
a scale and a length, so there is no way to make an all-purpose decimal function.

Despite al the above, below is a function that converts decimal datato character. It compro-
mises by assuming an input of type decimal(31,12), which should work in most situations:
CREATE FUNCTION CHAR_RIGHT(inval DECIMAL(31,12))
RETURNS CHAR (33)
RETURN CHAR_RIGHT(BIGINT(inval))

CONCAT ' .’
CONCAT SUBSTR (DIGITS (inval - TRUNCATE (inval,0)),20,12);

Figure 802, User-defined functions - covert decimal to character
The function works as follows:
e First, convert the input number to integer using the standard BIGINT function.

e Next, usethe previously defined CHAR_RIGHT user-function to convert the BIGINT
datato aright-justified character value.

e Then, add a period (dot) to the back of the output.

o Finadly append the digits (converted to character using the standard DIGITS function)
that represent the decimal component of the input.

Below isthe function in action:

Fun with SQL 301

Graeme Birchall ©

SELECT d sal

,CHAR_RIGHT (d_sal) AS d_chr
FROM (SELECT DEC(salary - 11000,6,2) AS d sal
FROM staff
WHERE salary > 10000 ANSWER
AND salary < 12200 =========================
)AS XXX D SAL D CHR

ORDER BY d sal; mmmmmmm e e oo — oo
-494.10 -494.100000000000
-12.00 -12.000000000000
508.60 508.600000000000
1009.75 1009.750000000000

Figure 803, Convert DECIMAL to CHAR

Floating point data can be processed using the above function, aslong asit isfirst converted
to decimal using the standard DECIMAL function.

Convert Timestamp to Numeric

There is absolutely no sane reason why anyone would want to convert a date, time, or time-
stamp value directly to a number. The only correct way to manipulate such datais to use the
provided date/time functions. But having said that, here is how one does it:

WITH TAB1 (TS1) AS
(VALUES CAST(’1998-11-22-03.44.55.123456’ AS TIMESTAMP))

SELECT TS1 => 1998-11-22-03.44.55.123456
, HEX (TS1 => 19981122034455123456
, DEC (HEX (TS1),20) => 19981122034455123456.
, FLOAT (DEC (HEX (TS1),20)) => 1.99811220344551e+019
,REAL (DEC (HEX (TS1),20)) => 1.998112e+019

FROM TABL;

Figure 804, Covert Timestamp to number

)
)
)
)

Selective Column Output

Thereisnoway in static SQL to vary the number of columns returned by a select statement.
In order to change the number of columns you have to write anew SQL statement and then
rebind. But one can use CASE logic to control whether or not a column returns any data.

Imagine that you are forced to use static SQL. Furthermore, imagine that you do not always
want to retrieve the data from all columns, and that you also do not want to transmit data over
the network that you do not need. For character columns, we can address this problem by re-
trieving the data only if it is wanted, and otherwise returning to a zero-length string. To illus-
trate, hereisan ordinary SQL statement:

SELECT EMPNO

, FIRSTNME
, LASTNAME
,JOB
FROM EMPLOYEE
WHERE EMPNO < ‘000100’

ORDER BY EMPNO;
Figure 805, Sample query with no column control

Here is the same SQL statement with each character column being checked against a host-
variable. If the host-variableis 1, the datais returned, otherwise a zero-length string:

302 Other Fun Things

DB2 UDB/V8.1 Cookbook ©

SELECT EMPNO
,CASE :host-var-1
WHEN 1 THEN FIRSTNME
ELSE r
END AS FIRSTNME
,CASE :host-var-2
WHEN 1 THEN LASTNAME
ELSE r
END AS LASTNAME
,CASE :host-var-3
WHEN 1 THEN VARCHAR (JOB)

ELSE r
END AS JOB
FROM EMPLOYEE
WHERE EMPNO < 000100’

ORDER BY EMPNO;
Figure 806, Sample query with column control

Making Charts Using SQL

Imagine that one had a string of numbers that one wanted to display as aline-bar char. With a
little coding, thisiseasy to do in SQL:

WITH TEMP1 (COL1l) AS (VALUES 12, 22, 33, 16, 0, 44, 15, 15)
SELECT COL1

, SUBSTR (TRANSLATE (CHAR(’ ',50),’*’,’” '),1,COLl)

AS PRETTY_ CHART
FROM TEMP1;

Figure 807, Make chart using SQL

COL1 PRETTY_ CHART

12 *khkkkhkkkkkkkkk
22 khkkhkkkhkkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkkkxx
33 LR R R RS EE SRS SRR RS EREEEEEEERESE
16 khkkkkhkkhkkhkhkkkkkkk*kx
0
44 khkkhkkkhkkhkhkkhhkhkkhkhkhkhkhkkhhkhhhdhkdkhhkdhhkdhdkhhdhhkhxdhkhkhx*x
15 LR R R R SRR SRR SRS
15 khkkkkhkkkkhkhkkhkkkkx*x

Figure 808, Make charts using SQL, Answer

To create the above graph we first defined a fifty-byte character field. The TRANSLATE
function was then used to convert al blanksin thisfield to asterisks. Lastly, the field was cut
down to size using the SUBSTR function.

A CASE statement should be used in those situations where one is not sure what will be high-
est value returned from the value being charted. This is needed because DB2 will return a
SQL error if aSUBSTR truncation-end value is greater than the related column length.

WITH TEMP1 (COL1l) AS (VALUES 12, 22, 33, 16, 0, 66, 15, 15)
SELECT COL1

, CASE
WHEN COL1 < 48
THEN SUBSTR (TRANSLATE (CHAR(’ ’,50),'*’,’ '),1,COLl)
ELSE TRANSLATE (CHAR(' ' ,47),'*'," ") ||">>>"'

END AS PRETTY_ CHART
FROM TEMP1;

Figure 809, Make charts using SQL

Fun with SQL 303

Graeme Birchall ©

COL1 PRETTY_ CHART

12 khkkkkkhkkhkkkkx
22 LR R R SRR SRR SRR EEE RS S
33 khkkkkhkkhkhkkhkhkhkkhkhkkhkhkhkkhhkhhkhkdkhkdkkhhdhhkdhdxk*x
16 EE R R RS LSRR SRS
0
66 LEEEE R R EE RS EEEREEEEEEREEEEEEEEEEEEEEEEEEEEEEEEERE SN
15 khkkkkhkkkkhkhkkhkkkkk*k
15 LR EE R SRR SRR SRS

Figure 810, Make charts using SQL, Answer

If the above SQL statement looks a bit intimidating, refer to the description of the SUBSTR
function given on page 138 for asimpler illustration of the same general process.

Multiple Counts in One Pass

The STATS table that is defined on page 116 has a SEX field with just two values, 'F (for
female) and 'M’ (for male). To get a count of the rows by sex we can write the following:

SELECT SEX ANSWER >> SEX NUM

,COUNT (*) AS NUM e e
FROM STATS F 595
GROUP BY SEX M 405

ORDER BY SEX;
Figure 811, Use GROUP BY to get counts

Imagine now that we wanted to get a count of the different sexes on the same line of output.
One, not very efficient, way to get this answer is shown below. It involves scanning the data
table twice (once for males, and once for females) then joining the result.

WITH F (F) AS (SELECT COUNT (*) FROM STATS WHERE SEX
,M (M) AS (SELECT COUNT (*) FROM STATS WHERE SEX

SELECT F, M

FROM F, M;

Figure 812, Use Common Table Expression to get counts

It would be more efficient if we answered the question with a single scan of the datatable.
This we can do using a CA SE statement and a SUM function:
SELECT SUM (CASE SEX WHEN 'F’ THEN 1 ELSE 0 END) AS FEMALE

,SUM (CASE SEX WHEN ’'M’ THEN 1 ELSE 0 END) AS MALE
FROM STATS;

Figure 813, Use CASE and SUM to get counts

We can now go one step further and also count something else as we pass down the data. In
the following example we get the count of all the rows at the same time as we get the individ-
ual sex counts.
SELECT COUNT (*) AS TOTAL
,SUM(CASE SEX WHEN 'F’ THEN 1 ELSE 0 END) AS FEMALE

,SUM (CASE SEX WHEN ‘M’ THEN 1 ELSE O END) AS MALE
FROM STATS;

Figure 814, Use CASE and SUM to get counts

Multiple Counts from the Same Row

Imagine that we want to select from the EMPLOY EE table the following counts presented in
atabular list with one line per item. In each case, if nothing matches we want to get a zero:

e Thosewith asalary greater than $20,000
e Thosewhosefirst name begins'’ABC%’

304 Other Fun Things

DB2 UDB/V8.1 Cookbook ©

e Those who are male.
e Employees per department.
e A count of all rows.

Note that a given row in the EMPLOY EE table may match more than one of the above crite-
ria. If thiswere not the case, a simple nested table expression could be used. Instead we will
do the following:

WITH CATEGORY (CAT,SUBCAT,DEPT) AS
(VALUES (’1ST’,'ROWS IN TABLE ’,’")
, ("2ND’, "SALARY > $20K ’,’’)
, ("3RD', 'NAME LIKE ABC%',’’)
, ("4TH’ , "NUMBER MALES ',’’)
UNION
SELECT ’5TH’, DEPTNAME, DEPTNO
FROM DEPARTMENT
)

SELECT XXX .CAT AS "CATEGORY"
, XXX . SUBCAT AS "SUBCATEGORY/DEPT"
, SUM (XXX .FOUND) AS "#ROWS"
FROM (SELECT CAT.CAT
, CAT.SUBCAT
, CASE
WHEN EMP.EMPNO IS NULL THEN O
ELSE 1
END AS FOUND
FROM CATEGORY CAT

LEFT OUTER JOIN
EMPLOYEE EMP

ON CAT.SUBCAT = 'ROWS IN TABLE’
OR (CAT.SUBCAT = 'NUMBER MALES’
AND EMP . SEX = 'M")
OR (CAT.SUBCAT = 'SALARY > $20K’
AND EMP.SALARY > 20000)
OR (CAT.SUBCAT = 'NAME LIKE ABCS%’
AND EMP.FIRSTNME LIKE ’'ABCS%’)
OR (CAT.DEPT <> '
AND CAT.DEPT = EMP.WORKDEPT)
)AS XXX

GROUP BY XXX.CAT
, XXX .SUBCAT

ORDER BY 1,2;
Figure 815, Multiple countsin one pass, SQL

In the above query, atemporary table is defined and then populated with all of the summation
types. Thistableisthen joined (using aleft outer join) to the EMPLOY EE table. Any
matches (i.e. where EMPNO is not null) are given a FOUND value of 1. The output of the
joinisthen feed into aGROUP BY to get the required counts.

Fun with SQL 305

Graeme Birchall ©

CATEGORY SUBCATEGORY/DEPT #ROWS
18T ROWS IN TABLE 32
2ND SALARY > $20K 25
3RD NAME LIKE ABC% 0
4TH NUMBER MALES 19
5TH ADMINISTRATION SYSTEMS 6
5TH DEVELOPMENT CENTER 0
5TH INFORMATION CENTER 3
5TH MANUFACTURING SYSTEMS 9
5TH OPERATIONS 5
5TH PLANNING 1
5TH SOFTWARE SUPPORT 4
5TH SPIFFY COMPUTER SERVICE DIV. 3
5TH SUPPORT SERVICES 1

Figure 816, Multiple countsin one pass, Answer

Find Missing Rows in Series / Count all Values

One often has a sequence of values (e.g. invoice numbers) from which one needs both found
and not-found rows. This cannot be done using asimple SELECT statement because some of
rows being selected may not actually exist. For example, the following query lists the number
of staff that have worked for the firm for "n" years, but it misses those years during which no
staff joined:

SELECT YEARS ANSWER
,COUNT (*) AS #STAFF =============
FROM STAFF YEARS #STAFF
WHERE UCASE (NAME) LIKE '%E%’" == —-m ————--
AND YEARS <= 5 1 1
GROUP BY YEARS; 4 2
5 3

Figure 817, Count staff joined per year

The simplest way to address this problem isto create a complete set of target values, then do
an outer join to the data table. Thisiswhat the following example does:
WITH LIST YEARS (YEAR#) AS ANSWER

(VALUES (0), (1), (2),(3), (4), (5) Sy
) YEARS #STAFF

SELECT YEAR# AS YEARS ammee oo
, COALESCE (#STFF, 0) AS #STAFF 0 0
FROM LIST_ YEARS 1 1
LEFT OUTER JOIN 2 0
(SELECT YEARS 3 0
,COUNT (*) AS #STFF 4 2
FROM STAFF 5 3
WHERE UCASE (NAME) LIKE ’$%E%’
AND YEARS <= 5
GROUP BY YEARS
)AS XXX
ON YEAR# = YEARS

ORDER BY 1;
Figure 818, Count staff joined per year, all years

The use of the VALUES syntax to create the set of target rows, as shown above, getsto be
tedious if the number of values to be made islarge. To address this issue, the following ex-
ample uses recursion to make the set of target values:

306 Other Fun Things

DB2 UDB/V8.1 Cookbook ©

WITH LIST_YEARS (YEAR#) AS ANSWER
(VALUES SMALLINT (0) ============
UNION ALL YEARS #STAFF
SELECT YEAR# + 1 mmmmm oo
FROM LIST YEARS 0 0
WHERE YEAR# < 5) 1 1

SELECT YEAR# AS YEARS 2 0

, COALESCE (#STFF, 0) AS #STAFF 3 0

FROM LIST YEARS 4 2

LEFT OUTER JOIN 5 3

(SELECT YEARS
,COUNT (*) AS #STFF

FROM STAFF
WHERE UCASE (NAME) LIKE ’'%E%’
AND YEARS <= 5
GROUP BY YEARS
)AS XXX
ON YEAR# = YEARS

ORDER BY 1;
Figure 819, Count staff joined per year, all years

If one turnsthe final outer join into a (negative) sub-query, one can use the same general logic
to list those years when no staff joined:

WITH LIST YEARS (YEAR#) AS ANSWER
(VALUES SMALLINT(0) ======
UNION ALL YEAR#
SELECT YEAR# + 1 e
FROM LIST YEARS 0
WHERE YEAR# < 5) 2

SELECT YEAR# 3

FROM LIST YEARS Y

WHERE NOT EXISTS

(SELECT *

FROM STAFF S
WHERE UCASE (S.NAME) LIKE 'S%ES%’
AND S.YEARS = Y.YEAR#)
ORDER BY 1;

Figure 820, List yearswhen no staff joined

Normalize Denormalized Data

Imagine that one has a string of text that one wants to break up into individual words. Aslong
as the word delimiter isfairly basic (e.g. ablank space), one can use recursive SQL to do this
task. Onerecursively divides the text into two parts (working from left to right). The first part
is the word found, and the second part is the remainder of the text:

Fun with SQL 307

Graeme Birchall ©

WITH
TEMP1 (ID, DATA) AS
(VALUES (01, 'SOME TEXT TO PARSE.')
, (02, "MORE SAMPLE TEXT.')
, (03, 'ONE-WORD. ')
, (04,7 7)
),
TEMP2 (ID, WORD#, WORD, DATA LEFT) AS
(SELECT 1ID

, SMALLINT (1)
, SUBSTR (DATA, 1,
CASE LOCATE ('’ ' ,DATA)
WHEN 0 THEN LENGTH (DATA)
ELSE LOCATE (’ ' ,DATA)
END)
, LTRIM (SUBSTR (DATA,
CASE LOCATE(’ ’,DATA)
WHEN 0 THEN LENGTH (DATA) + 1
ELSE LOCATE (’ ’,DATA)
END))
FROM TEMP1
WHERE DATA <> '’
UNION ALL
SELECT 1ID
,WORD# + 1
, SUBSTR (DATA LEFT, 1,
CASE LOCATE(’ ' ,DATA LEFT)
WHEN 0 THEN LENGTH (DATA LEFT)
ELSE LOCATE (' ' ,DATA LEFT)
END)
, LTRIM (SUBSTR (DATA_ LEFT,
CASE LOCATE(’ ',DATA LEFT)
WHEN 0 THEN LENGTH (DATA LEFT) + 1
ELSE LOCATE(’ ' ,DATA LEFT)
END))
FROM TEMP2
WHERE DATA LEFT <> '’
)
SELECT *
FROM TEMP2

ORDER BY 1,2;
Figure 821, Break text into words - SQL

The SUBSTR function is used above to extract both the next word in the string, and the re-
mainder of the text. If thereisablank byte in the string, the SUBSTR stops (or begins, when
getting the remainder) at it. If not, it goes to (or begins at) the end of the string. CASE logic is
used to decide what to do.

ID WORD# WORD DATA LEFT

1 1 SOME TEXT TO PARSE.
1 2 TEXT TO PARSE.

1 3 TO PARSE.

1 4 PARSE

2 1 MORE SAMPLE TEXT.

2 2 SAMPLE TEXT.

2 3 TEXT

3 1 ONE-WORD.

Figure 822, Break text into words - Answer

Denormalize Normalized Data

In the next example, we shall use recursion to string together all of the employee NAME
fieldsin the STAFF table (by department):

308 Other Fun Things

DB2 UDB/V8.1 Cookbook ©

WITH TEMP1

(DEPT, W#, NAME, ALL. NAMES) AS

(SELECT DEPT
, SMALLINT (1)
, MIN (NAME)
, VARCHAR (MIN (NAME) , 50)
FROM STAFF A
GROUP BY DEPT
UNION ALL
SELECT A.DEPT
, SMALLINT (B.W#+1)
,A.NAME
,B.ALL NAMES || * ’ || A.NAME
FROM STAFF A
, TEMP1 B
WHERE A.DEPT = B.DEPT
AND A.NAME > B.NAME
AND A.NAME =
(SELECT MIN (C.NAME)
FROM STAFF C
WHERE C.DEPT = B.DEPT
AND C.NAME > B.NAME)
)
SELECT DEPT
,W#
,NAME AS MAX NAME
,ALL NAMES
FROM TEMP1 D
WHERE WH =

DEPT
10
15
20
38
42
51
66
84

(SELECT MAX (W#)
FROM TEMP1 E
WHERE D.DEPT = E.DEPT)
ORDER BY DEPT;

Figure 823, Denormalize Normalized Data - SQL

The above statement begins by getting the minimum name in each department. It then recur-
sively gets the next to lowest name, then the next, and so on. Aswe progress, we store the
current name in the temporary NAME field, maintain a count of names added, and append the
sameto the end of the ALL_NAMES field. Once we have all of the names, the final SELECT
eliminates from the answer-set all rows, except the last for each department.

W# MAX NAME

B OUTUT R U

Molinare
Rothman
Sneider
Quigley
Yamaguchi
Williams
Wilson
Quill

ALL_NAMES

Daniels Jones Lu Molinare

Hanes Kermisch Ngan Rothman

James Pernal Sanders Sneider

Abrahams Marenghi Naughton O’Brien Quigley
Koonitz Plotz Scoutten Yamaguchi

Fraye Lundquist Smith Wheeler Williams
Burke Gonzales Graham Lea Wilson

Davis Edwards Gafney Quill

Figure 824, Denormalize Normalized Data - Answer

If there are no suitable indexes, the above query may be horribly inefficient. If thisis the case,
one can create a user-defined function to string together the names in a department:

Fun with SQL

309

Graeme Birchall ©

CREATE FUNCTION list names (indept SMALLINT) IMPORTANT
RETURNS VARCHAR (50) ============
BEGIN ATOMIC This example
DECLARE outstr VARCHAR(50) DEFAULT '‘; uses an "!I"
FOR list_names AS as the stmt
SELECT name delimiter.
FROM staff
WHERE dept = indept
ORDER BY name
DO
SET outstr = outstr || name || * ’;
END FOR;

SET outstr = rtrim(outstr) ;
RETURN outstr;

END!
SELECT dept AS DEPT
, SMALLINT (cnt) AS WH
, XX AS MAX NAME
,list names(dept) AS ALL_ NAMES
FROM (SELECT dept

,COUNT (*) as cnt
,MAX (name) AS mxx

FROM staff
GROUP BY dept
)as ddd

ORDER BY dept!
Figure 825, Creating a function to denormalize names

Even the above might have unsatisfactory performance - if there is no index on department. If
adding an index to the STAFF table is not an option, it might be faster to insert al of the rows
into a declared temporary table, and then add an index to that.

Reversing Field Contents

DB2 lacks a simple function for reversing the contents of a data field. Fortunately, we can
create afunction to do it ourselves.

Input vs. Output

Before we do any data reversing, we have to define what the reversed output should look like
relative to agiven input value. For example, if we have afour-digit numeric field, the reverse
of the number 123 could be 321, or it could be 3210. The latter value implies that the input
has aleading zero. It also assumes that we really are working with afour digit field. Likewise,
the reverse of the number 124.45 might be 54.123, or 543.12.

Trailing blanks in character values are a similar problem. Obviously, the reverse of "ABC" is
"CBA", but what isthe reverse of "ABC "? Thereis no specific technical answer to any of
these questions. The correct answer depends upon the business needs of the application.

Below isauser defined function that can reverse the contents of a character field:

310 Other Fun Things

DB2 UDB/V8.1 Cookbook ©

--#SET DELIMITER ! IMPORTANT

CREATE FUNCTION reverse (instr VARCHAR (50)) This example

RETURNS VARCHAR (50) uses an "!I"

BEGIN ATOMIC as the stmt
DECLARE outstr VARCHAR (50) DEFAULT '’; delimiter.
DECLARE curbyte SMALLINT DEFAULT O;

SET curbyte = LENGTH (RTRIM (instr)) ;
WHILE curbyte >= 1 DO

SET outstr = outstr || SUBSTR(instr,curbyte,1l);
SET curbyte = curbyte - 1;
END WHILE;
RETURN outstr;
END!
ANSWER
SELECT id AS ID ====================
, name AS NAME1 ID NAME1 NAME2
,reverse (name) AS NAME2 B i R
FROM staff 10 Sanders srednaS
WHERE id < 40 20 Pernal lanreP
ORDER BY id! 30 Marenghi ihgneraM

Figure 826, Reversing character field

The same function can be used to reverse numeric values, aslong asthey are positive:

SELECT id AS ID

,salary AS SALARY1

,DEC (reverse (CHAR (salary)),7,4) AS SALARY2
FROM staff ANSWER
WHERE id < 40 —==================
ORDER BY id; ID SALARY1 SALARY2

10 18357.50 5.7538
20 18171.25 52.1718
30 17506.75 57.6057

Figure 827, Reversing numeric field

Simple CASE logic can be used to deal with negative values (i.e. to move the sign to the front
of the string, before converting back to numeric), if they exist.

Stripping Characters

If al you want to do is remove leading and trailing blanks, the LTRIM and RTRIM functions
can be combined to do the job:

WITH TEMP (TXT) AS ANSWER

(VALUES (' HAS LEADING BLANKS') =======================
, ('"HAS TRAILING BLANKS ') TXT2 LEN
, (* BLANKS BOTH ENDS D e ---

SELECT LTRIM(RTRIM (TXT)) AS TXT2 HAS LEADING BLANKS 18
, LENGTH (LTRIM (RTRIM (TXT))) AS LEN HAS TRAILING BLANKS 19

FROM TEMP; BLANKS BOTH ENDS 16

Figure 828, Sripping leading and trailing blanks
Writing Your Own STRIP Function

Stripping leading and trailing non-blank charactersis alittle harder, and is best done by writ-
ing your own function. The following example goes thus:

e Check that a one-byte strip value was provided. Signal an error if not.

e Starting from the left, scan the input string one byte at atime, looking for the character to
be stripped. Stop scanning when something else is found.

e Usethe SUBSTR function to trim the input-string - up to the first non-target value found.

Fun with SQL 311

Graeme Birchall ©

e Starting from the right, scan the left-stripped input string one byte at atime, looking for
the character to be stripped. Stop scanning when something elseis found.

e Usethe SUBSTR function to trim the right side of the already |eft-trimmed input string.

e Return theresult.

Hereisthe code:
--#SET DELIMITER !

CREATE FUNCTION strip(in_val VARCHAR(20),in_strip VARCHAR(1))

RETURNS VARCHAR (20)
BEGIN ATOMIC
DECLARE cur_pos SMALLINT;
DECLARE stp flg CHAR(1) ;
DECLARE out_ val VARCHAR(20) ;
IF in_strip = ‘'’ THEN
SIGNAL SQLSTATE ’75001’

SET MESSAGE_TEXT = ’'Strip char is zero length’;

END IF;
SET cur _pos =1

SET stp flg = 'Y’;

WHILE stp_flg = ‘Y’ AND cur pos <= length(in_val) DO
IF SUBSTR(in val,cur pos,1l) <> in strip THEN

SET stp_flg = 'N’;
ELSE
SET cur_pos = cur_pos + 1;
END IF;
END WHILE;
SET out_val SUBSTR (in_val, cur pos) ;
SET cur_pos length(out_val) ;
SET stp flg 'Y’ ;
WHILE stp flg = 'Y’ AND cur_pos >= 1 DO

IF SUBSTR(out val,cur pos,l) <> in strip THEN

SET stp flg = 'N’;
ELSE
SET cur_pos = cur_pos - 1;
END IF;
END WHILE;
SET out_val = SUBSTR(out_val,1l,cur_ pos) ;
RETURN out_val;
END!

Figure 829, Define strip function

Here is the above function in action:

WITH wordl (w#, word val) AS
(VALUES (1,00 abc 000")
, (2,70 0 abc’)
, (3,7 sdbs’)
, (4,000 0")
, (5,
, (6,707
,(7,7a")
,(8,77))
SELECT wi
,word_val
,strip(word_val,’0") AS stp
,length(strip(word val,’0’)) AS len
FROM wordl
ORDER BY w#;

Figure 830, Use strip function

312

IMPORTANT

This example
uses an "!I"
as the stmt
delimiter.

1

00 abc 000
0 0 abc
sdbs

000 O

0000

0

a

STP LEN
abc 5
0 abc 6
sdbs 5

1
0
0
a 1
0

Other Fun Things

DB2 UDB/V8.1 Cookbook ©

Sort Character Field Contents

The following user-defined scalar function will sort the contents of a character field in either
ascending or descending order. There are two input parameters:

e Theinput string: Aswritten, the input can be up to 20 byteslong. To sort longer fields,
change the input, output, and OUT-VAL (variable) lengths as desired.

e Thesort order (i.e. A’ or 'D’).

The function uses avery simple, and not very efficient, bubble-sort. In other words, the input
string is scanned from left to right, comparing two adjacent characters at atime. If they are
not in sequence, they are swapped - and flag indicating thisis set on. The scans are repeated
until al of the charactersin the string are in order:

--#SET DELIMITER !

CREATE FUNCTION sort_ char (in_val VARCHAR(20),sort_dir VARCHAR(1))
RETURNS VARCHAR (20)
BEGIN ATOMIC

DECLARE cur_pos SMALLINT;

DECLARE do_sort CHAR(1);

DECLARE out val VARCHAR(20) ;

IF UCASE(sort_dir) NOT IN (’A’,’D’) THEN

SIGNAL SQLSTATE ‘75001

SET MESSAGE_TEXT = ’'Sort order not '’'A’’ or ''D'’'’;
END IF;
SET out_val = in_val;
SET do_sort = 'Y’;
WHILE do_sort = 'Y’ DO
SET do_sort = ’'N’; IMPORTANT
SET cur_pos = 1; ============
WHILE cur_pos < length(in val) DO This example
IF (UCASE (sort_dir) = 'A’ uses an "!"
AND SUBSTR(out val,cur_pos+l,1) < as the stmt
SUBSTR (out_val,cur_pos, 1)) delimiter.
OR (UCASE (sort dir) = 'D’'

\Y

AND SUBSTR (out_val,cur_pos+1,1)

SUBSTR (out_val,cur pos,1)) THEN
SET do_sort = 'Y’;
SET out_val = CASE
WHEN cur pos = 1
THEN '’
ELSE SUBSTR(out_val,1l,cur pos-1)
END

CONCAT SUBSTR (out_val,cur_pos+1,1)
CONCAT SUBSTR (out_val,cur pos ,1)

CONCAT
CASE
WHEN cur pos = length(in val) - 1
THEN '’
ELSE SUBSTR (out_val,cur pos+2)
END;
END IF;
SET cur_pos = cur_pos + 1;
END WHILE;
END WHILE;
RETURN out val;

END!
Figure 831, Define sort-char function

Hereis the function in action:

Fun with SQL 313

Graeme Birchall ©

WITH wordl (w#, word val) AS ANSWER
(VALUES (1, /12345678") =============================
, (2, "ABCDEFG’) WH WORD_VAL SA SD
, (3,"AaBbCc’) mm mmmmm e e mmmmmmm oo
, (4, "abccb’) 1 12345678 12345678 87654321
L, (5,7 TSR 2 ABCDEFG ABCDEFG GFEDCBA
, (6,"bB") 3 AaBbCc aAbBcC CcBbAa
,(7,7a") 4 abccb abbcc ccbba
,(8,77)) 5 "%#. HS SH .
SELECT wi 6 bB bB Bb
,word_val 7 a a a
,sort char (word val,’a’) sa 8
,sort_char (word val,’D’) sd
FROM wordl

ORDER BY w#;
Figure 832, Use sort-char function

Query Runs for "n" Seconds

Imagine that one wanted some query to take exactly four seconds to run. The following query
doesjust this - by looping (using recursion) until such time as the current system timestamp is
four seconds greater than the system timestamp obtained at the beginning of the query:

WITH TEMP1 (NUM,TS1,TS2) AS

(VALUES (INT (1)

, TIMESTAMP (GENERATE UNIQUE ())
, TIMESTAMP (GENERATE_UNIQUE ()))

UNION ALL
SELECT NUM + 1
, TS1

, TIMESTAMP (GENERATE UNIQUE ())
FROM TEMP1
WHERE TIMESTAMPDIFF (2, CHAR (TS2-TS1)) < 4

)

SELECT MAX(NUM) AS #LOOPS
,MIN(TS2) AS BGN TIMESTAMP
,MAX (TS2) AS END_ TIMESTAMP

FROM TEMP1;

58327 2001-08-09-22.58.12.754579 2001-08-09-22.58.16.754634
Figure 833, Run query for four seconds

Observe that the CURRENT TIMESTAMP special register is not used above. It is not appro-
priate for this situation, because it always returns the same value for each invocation within a
single query.

Calculating the Median

The median is defined at that value in a series of values where half of the values are higher to
it and the other half are lower. The median is a useful number to get when the data has afew
very extreme values that skew the average.

If there are an odd number of valuesin the list, then the median value is the onein the middle
(e.g. if 7 values, the median valueis#4). If there is an even number of matching values, there
are two formulas that one can use:

e The most commonly used definition is that the median equals the sum of the two middle
values, divided by two.

e A lessoften used definition is that the median is the smaller of the two middle values.

314 Other Fun Things

DB2 UDB/V8.1 Cookbook ©

DB2 does not come with a function for calculating the median, but it can be obtained using
the ROW_NUMBER function. This function is used to assign a row number to every match-
ing row, and then one searches for the row with the middle row number.

Using Formula #1

Below is some sample code that gets the median SALARY/, by JOB, for some set of rowsin
the STAFF table. Two JOB values are referenced - one with seven matching rows, and one
with four. The query logic goes as follows:

e Get the matching set of rows from the STAFF table, and give each row a row-number,
within each JOB value.

e Using the set of rows retrieved above, get the maximum row-number, per JOB value,
then add 1.0, then divide by 2, then add or subtract 0.6. This will give one two values that
encompass a single row-number, if an odd number of rows match, and two row-numbers,
if an even number of rows match.

e Finadly, join the one row per JOB obtained in step 2 above to the set of rows retrieved in
step 1 - by common JOB value, and where the row-number is within the high/low range.
The average salary of whatever is retrieved is the median.

Now for the code:

WITH numbered rows AS
(SELECT s.*
, ROW_NUMBER () OVER (PARTITION BY job

ORDER BY salary, id) AS row#
FROM staff s
WHERE comm > 0
AND name LIKE ’'%e%’),

median row num AS
(SELECT = job
, (MAX (row# + 1.0) / 2) - O.
, (MAX (row# + 1.0) / 2) + 0.
FROM numbered rows
GROUP BY job)
SELECT nn.job
,DEC(AVG (nn.salary),7,2) AS med_sal

5 AS med lo
5 AS med_hi

FROM numbered_ rows nn ANSWER
,median_row num mr ==============
WHERE nn.job = mr.job JOB MED SAL
AND nn.row# BETWEEN mr.med lo AND mr.med hi = ----- --------
GROUP BY nn.job Clerk 13030.50
ORDER BY nn.job; Sales 17432.10

Figure 834, Calculating the median

IMPORTANT: To get consistent results when using the ROW_NUMBER function, one
must ensure that the ORDER BY column list encompasses the unique key of the table.
Otherwise the row-number values will be assigned randomly - if there are multiple rows
with the same value. In this particular case, the ID has been included in the ORDER BY
list, to address duplicate SALARY values.

The next example is the essentially the same as the prior, but there is additional code that gets
the average SALARY/, and a count of the number of matching rows per JOB value. Observe
that all this extra code went in the second step:

Fun with SQL 315

Graeme Birchall ©

WITH numbered rows AS
(SELECT s.*
, ROW_NUMBER () OVER (PARTITION BY job

ORDER BY salary, id) AS row#
FROM staff s
WHERE comm > 0
AND name LIKE ’'%e%’),

median row num AS
(SELECT = job

, (MAX (row# + 1.0) / 2) - 0.5 AS med_lo
, (MAX (row# + 1.0) / 2) + 0.5 AS med_hi
,DEC (AVG (salary) ,7,2) AS avg_sal
, COUNT (*) AS #rows

FROM numbered rows
GROUP BY job)
SELECT nn.job
,DEC(AVG (nn.salary),7,2) AS med_sal

,MAX (mr.avg_sal) AS avg_sal
,MAX (mr . #rows) AS #r
FROM numbered_ rows nn
,median_row_num mr ANSWER
WHERE nn.job = mr.job ==========================
AND nn.row# BETWEEN mr.med lo JOB MED SAL AVG_SAL #R
AND mr.med_hi = @ —---- —-mmmem oo --
GROUP BY nn.job Clerk 13030.50 12857.56 7
ORDER BY nn.job; Sales 17432.10 17460.93 4

Figure 835, Get median plus average
Using Formula #2

Once again, the following sample code gets the median SALARY,, by JOB, for some set of
rows in the STAFF table. Two JOB vaues are referenced - one with seven matching rows,
and the other with four. In this case, when there are an even number of matching rows, the
smaller of the two middle values is chosen. The logic goes as follows:

e Get the matching set of rows from the STAFF table, and give each row a row-number,
within each JOB value.

e Using the set of rows retrieved above, get the maximum row-number per JOB, then add
1, then divide by 2. Thiswill get the row-number for the row with the median value.

e Findly, join the one row per JOB obtained in step 2 above to the set of rows retrieved in
step 1 - by common JOB and row-number value.
WITH numbered rows AS

(SELECT S.*
,ROW_NUMBER () OVER (PARTITION BY job

ORDER BY salary, id) AS row#
FROM staff s
WHERE comm > 0
AND name LIKE ’'%e%’),

median_row_num AS
(SELECT job
,MAX (row# + 1) / 2 AS med row#
FROM numbered rows
GROUP BY job)
SELECT nn.job

,nn.salary AS med_sal ANSWER
FROM numbered_rows nn ==============
,median_row_num mr JOB MED_SAL
WHERE nn.job = mr.job ——eme —m—————-
AND nn.row# = mr.med_row# Clerk 13030.50
ORDER BY nn.job; Sales 16858.20

Figure 836, Calculating the median

316 Other Fun Things

DB2 UDB/V8.1 Cookbook ©

The next query is the same as the prior, but it uses a sub-query, instead of creating and then
joining to a second temporary table:
WITH numbered rows AS

(SELECT S.*
,ROW_NUMBER () OVER (PARTITION BY job

ORDER BY salary, id) AS row#
FROM staff s
WHERE comm > 0
AND name LIKE '%e%’)
SELECT job
,salary AS med sal
FROM numbered_rows
WHERE (job, row#) IN ANSWER
(SELECT job ==============
,MAX (row# + 1) / 2 JOB MED_ SAL
FROM numbered_rows === == ——----—-
GROUP BY job) Clerk 13030.50
ORDER BY job; Sales 16858.20

Figure 837, Calculating the median

The next query lists every matching row in the STAFF table (per JOB), and on each line of
output, shows the median saary:
WITH numbered rows AS

(SELECT S.*
,ROW_NUMBER () OVER (PARTITION BY job

ORDER BY salary, id) AS row#
FROM staff s
WHERE comm > 0
AND name LIKE ’%e%’)

SELECT rl.*
, (SELECT r2.salary
FROM numbered_rows r2

WHERE r2.job = rl.job
AND r2.row# = (SELECT MAX(r3.row# + 1) / 2
FROM numbered rows r3
WHERE r2.job = r3.job)) AS med_sal
FROM numbered rows rl
ORDER BY job
,salary;

Figure 838, List matching rows and median

Fun with SQL 317

Graeme Birchall ©

318 Other Fun Things

DB2 UDB/V8.1 Cookbook ©

Quirks in SQL

One might have noticed by now that not all SQL statements are easy to comprehend. Unfor-
tunately, the situation is perhaps alittle worse than you think. In this section we will discuss
some SQL statements that are correct, but which act just alittle funny.

Trouble with Timestamps

When does one timestamp not equal another with the same value? The answer is, when one
value uses a 24 hour notation to represent midnight and the other does not. To illustrate, the
following two timestamp val ues represent the same point in time, but not according to DB2:

WITH TEMP1 (C1,T1,T2) AS (VALUES ANSWER
('a’ e
, TIMESTAMP (*1996-05-01-24.00.00.000000") <no rowss>
, TIMESTAMP (’1996-05-02-00.00.00.000000")))

SELECT C1

FROM TEMP1
WHERE T1 = T2;

Figure 839, Timestamp comparison - Incorrect

To make DB2 think that both timestamps are actually equal (which they are), all we haveto
doisfiddle around with them a bit:

WITH TEMP1 (C1,T1,T2) AS (VALUES ANSWER
(/A/ ======
, TIMESTAMP (' 1996-05-01-24.00.00.000000") Cc1
, TIMESTAMP (’ 1996-05-02-00.00.00.000000"))) --
SELECT C1 A

FROM TEMP1
WHERE T1 + 0 MICROSECOND = T2 + 0 MICROSECOND;

Figure 840, Timestamp comparison - Correct

Be aware that, as with everything else in this section, what is shown above is not abug. It is
the way that it is because it makes perfect sense, even if it is not intuitive.

Using 24 Hour Notation

One might have to use the 24-hour notation, if one needs to record (in DB2) external actions
that happen just before midnight - with the correct date value. To illustrate, imagine that we
have the following table, which records supermarket sales:

CREATE TABLE SUPERMARKET SALES

(SALES TS TIMESTAMP NOT NULL

,SALES_VAL DECIMAL(8,2) NOT NULL
, PRIMARY KEY (SALES_TS)) ;

Figure 841, Sample Table

In this application, anything that happens before midnight, no matter how close, is deemed to
have happened on the specified day. So if a transaction comes in with a timestamp value that
isatiny fraction of a microsecond before midnight, we should record it thus:
INSERT INTO SUPERMARKET SALES VALUES
(/2003-08-01-24.00.00.000000",123.45) ;
Figure 842, Insert row

Quirks in SQL 319

Graeme Birchall ©

Now, if we want to select all of the rows that are for a given day, we can write this:

SELECT *
FROM SUPERMARKET SALES
WHERE DATE (SALES_TS) = ’2003-08-01"

ORDER BY SALES TS;
Figure 843, Select rows for given date

Or this;
SELECT *
FROM SUPERMARKET SALES
WHERE SALES_TS BETWEEN ’'2003-08-01-00.00.00"

AND '2003-08-01-24.00.00"
ORDER BY SALES TS;

Figure 844, Select rows for given date

DB2 will never internally generate a timestamp value that uses the 24 hour notation. But it is
provided so that you can use it yourself, if you need to.

No Rows Match

How many rows to are returned by a query when no rows match the provided predicates? The
answer is that sometimes you get none, and sometimes you get one:

SELECT CREATOR ANSWER

FROM SYSIBM.SYSTABLES —=======

WHERE CREATOR = 'ZZZ'; <NnoO row>
Figure 845, Query with no matching rows (1 of 8)

SELECT MAX (CREATOR) ANSWER

FROM SYSIBM.SYSTABLES ======

WHERE CREATOR = 'ZZZ'; <null>
Figure 846, Query with no matching rows (2 of 8)

SELECT MAX (CREATOR) ANSWER

FROM SYSIBM.SYSTABLES ========

WHERE CREATOR = 'ZZZ' <no row>

HAVING MAX (CREATOR) IS NOT NULL;
Figure 847, Query with no matching rows (3 of 8)

SELECT MAX (CREATOR) ANSWER
FROM SYSIBM.SYSTABLES —=======
WHERE CREATOR = 'ZZ2Z' <NnoO row>
HAVING MAX (CREATOR) = 'ZZZ’;
Figure 848, Query with no matching rows (4 of 8)

SELECT MAX (CREATOR) ANSWER
FROM SYSIBM.SYSTABLES —=======
WHERE CREATOR = 'ZZZ' <NnoO row>

GROUP BY CREATOR;
Figure 849, Query with no matching rows (5 of 8)

SELECT CREATOR ANSWER
FROM SYSIBM.SYSTABLES —=======
WHERE CREATOR = 'Z2Z' <NnoO row>

GROUP BY CREATOR;
Figure 850, Query with no matching rows (6 of 8)

SELECT COUNT (*) ANSWER
FROM SYSIBM.SYSTABLES —=======
WHERE CREATOR = 'Z2Z' <Nno row>

GROUP BY CREATOR;
Figure 851, Query with no matching rows (7 of 8)

320

DB2 UDB/V8.1 Cookbook ©

SELECT COUNT (*) ANSWER
FROM SYSIBM.SYSTABLES ======
WHERE CREATOR = '2Z2Z'; 0

Figure 852, Query with no matching rows (8 of 8)

There is a pattern to the above, and it goes thus:

When there is no column function (e.g. MAX, COUNT) in the SELECT then, if there are
no matching rows, no row isreturned.

If thereisacolumn function in the SELECT, but nothing else, then the query will always
return arow - with zero if the function isa COUNT, and null if it is something else.

If thereis acolumn function in the SELECT, and also aHAVING phrasein the query, a
row will only be returned if the HAVING predicateis true.

If thereis acolumn function in the SELECT, and also aGROUP BY phrase in the query,
arow will only be returned if there was one that matched.

Imagine that one wants to retrieve alist of names from the STAFF table, but when no names
match, one wants to get a row/column with the phrase "NO NAMES', rather than zero rows.
The next query does this by first generating a"not found" row using the SY SDUMMY 1 table,
and then left-outer-joining to the set of matching rows in the STAFF table. The COALESCE
function will return the STAFF data, if thereis any, €lse the not-found data:

SELECT COALESCE (NAME, NONAME) AS NME ANSWER
, COALESCE (SALARY,NOSAL) AS SAL ============
FROM (SELECT 'NO NAME’ AS NONAME NME SAL
, 0 AS NOSAL mmmmeo oo
FROM SYSIBM.SYSDUMMY1l NO NAME 0.00
)AS NNN
LEFT OUTER JOIN
(SELECT *
FROM STAFF
WHERE ID < 5
)AS XXX
ON 1 =1

ORDER BY NAME;

Figure 853, Always get a row, example 1 of 2

The next query islogically the same as the prior, but it uses the WITH phrase to generate the
"not found" row in the SQL statement:

WITH NNN (NONAME, NOSAL) AS ANSWER
(VALUES (’NO NAME',O0)) S —
SELECT COALESCE (NAME, NONAME) AS NME NME SAL

,COALESCE (SALARY,NOSAL) AS SAL mmmmmee oo
FROM NNN NO NAME 0.00
LEFT OUTER JOIN

(SELECT *

FROM STAFF

WHERE ID < 5

)AS XXX
ON 1 =1

ORDER BY NAME;

Figure 854, Always get a row, example 2 of 2

Dumb Date Usage

Imagine that you have some character value that you convert to a DB2 date. The correct way
to do it isgiven below:

Quirks in SQL 321

Graeme Birchall ©

SELECT DATE ('2001-09-22") ANSWER
FROM SYSIBM.SYSDUMMY1; —=========
09/22/2001
Figure 855, Convert value to DB2 date, right

What happens if you accidentally leave out the quotes in the DATE function? The function
still works, but the result is not correct:
SELECT DATE (2001-09-22) ANSWER
FROM SYSIBM.SYSDUMMY1; ==========
05/24/0006
Figure 856, Convert value to DB2 date, wrong

Why the 2,000 year difference in the above results? When the DATE function gets a character
string asinput, it assumesthat it is valid character representation of a DB2 date, and converts
it accordingly. By contrast, when the input is numeric, the function assumes that it represents
the number of days minus one from the start of the current era (i.e. 0001-01-01). In the above
query the input was 2001-09-22, which equals (2001-9)-22, which equals 1970 days.

RAND in Predicate

The following query was written with intentions of getting a single random row out of the
matching set in the STAFF table. Unfortunately, it returned two rows:

SELECT ID ANSWER
, NAME So——————ooo

FROM STAFF ID NAME
WHERE ID <= 100 e
AND ID = (INT(RAND()* 10) * 10) + 10 30 Marenghi
ORDER BY ID; 60 Quigley

Figure 857, Get random rows - Incorrect

The above SQL returned more than one row because the RAND function was reevaluated for
each matching row. Thus the RAND predicate was being dynamically altered as rows were
being fetched.

Toillustrate what is going on above, consider the following query. The results of the RAND
function are displayed in the output. Observe that there are multiple rows where the function
output (suitably massaged) matched the ID vaue. In theory, anywhere between zero and all
rows could match:

WITH TEMP AS ANSWER
(SELECT ID ====================
, NAME ID NAME RAN EQL
, (INT(RAND (0) * 10) * 10) + 10 AS RAN = --- -------- ——— ——-
FROM STAFF 10 Sanders 10 Y
WHERE ID <= 100 20 Pernal 30
) 30 Marenghi 70
SELECT T.* 40 O’'Brien 10
,CASE ID 50 Hanes 30
WHEN RAN THEN 'Y’ 60 Quigley 40
ELSE rot 70 Rothman 30
END AS EQL 80 James 100
FROM TEMP T 90 Koonitz 40
ORDER BY ID; 100 Plotz 100 Y

Figure 858, Get random rows - Explanation
Getting "n" Random Rows

There are several ways to always get exactly "n" random rows from a set of matching rows.
In the following example, three rows are required:

322

DB2 UDB/V8.1 Cookbook ©

WITH ANSWER
STAFF_NUMBERED AS ===========
(SELECT S.* ID NAME

,ROW_NUMBER () OVER() AS ROW# === -
FROM STAFF S 10 Sanders
WHERE ID <= 100 20 Pernal

) 90 Koonitz
COUNT_ ROWS AS
(SELECT MAX (ROW#) AS #ROWS
FROM STAFF NUMBERED
),
RANDOM VALUES (RAN#) AS
(VALUES (RAND())
, (RAND ())
) . (RAND ())
ROWS_TO_GET AS
(SELECT INT (RAN# * #ROWS) + 1 AS GET_ROW
FROM RANDOM VALUES

, COUNT _ROWS
)
SELECT ID
, NAME
FROM STAFF_NUMBERED
,ROWS_TO_GET
WHERE ROW# = GET ROW

ORDER BY 1ID;
Figure 859, Get random rows - Non-distinct

The above query works as follows:

o First, the matching rows in the STAFF table are assigned a row number.
e Second, acount of the total number of matching rows s obtained.

e Third, atemporary table with three random values is generated.

e Fourth, the three random val ues are joined to the row-count value, resulting in three new
row-number values (of type integer) within the correct range.

e Findly, the three row-number values are joined to the original temporary table.
There are some problems with the above query:

e |f morethan a small number of random rows are required, the random values cannot be
defined using the VALUES phrase. Some recursive code can do the job.

¢ Intheextremely unlikely event that the RAND function returns the value "one", no row
will match. CASE logic can be used to address thisissue.

e Ignoring the problem just mentioned, the above query will always return three rows, but
the rows may not be different rows. Depending on what the three RAND calls generate,
the query may even return just one row - repeated three times.

In contrast to the above query, the following will always return three different random rows:

Quirks in SQL 323

Graeme Birchall ©

SELECT ID ANSWER
, NAME ===========
FROM (SELECT S.* ID NAME
,ROW_NUMBER () OVER(ORDER BY RAND()) AS R -- --------
FROM STAFF S 10 Sanders
WHERE ID <= 100 40 O’Brien
)AS XXX 60 Quigley
WHERE R <= 3

ORDER BY 1ID;
Figure 860, Get random rows - Distinct

In this query, the matching rows are first numbered in random order, and then the three rows
with the lowest row number are selected.

Summary of Issues

The lesson to be learnt hereis that one must consider exactly how random one wants to be
when one goes searching for a set of random rows:

e Does one want the number of rows returned to be also somewhat random?
e Doesonewant exactly "n" rows, but it is OK to get the same row twice?

e Doesonewant exactly "n" distinct (i.e. different) random rows?

Date/Time Manipulation

I once had a table that contained two fields - the timestamp when an event began, and the
elapsed time of the event. To get the end-time of the event, | added the elapsed time to the
begin-timestamp - asin the following SQL:

WITH TEMP1l (BGN TSTAMP, ELP SEC) AS

(VALUES (TIMESTAMP (’2001-01-15-01.02.03.000000"), 1.234)
, (TIMESTAMP (' 2001-01-15-01.02.03.123456"), 1.234)
)

SELECT BGN_ TSTAMP

,ELP_SEC
,BGN_TSTAMP + ELP_SEC SECONDS AS END TSTAMP
FROM TEMP1;
ANSWER
BGN_TSTAMP ELP_SEC END TSTAMP
2001-01-15-01.02.03.000000 1.234 2001-01-15-01.02.04.000000
2001-01-15-01.02.03.123456 1.234 2001-01-15-01.02.04.123456

Figure 861, Date/Time manipulation - wrong

Asyou can see, my end-time isincorrect. In particular, the factional part of the elapsed time

has not been used in the addition. | subsequently found out that DB2 never uses the fractional
part of a number in date/time calculations. So to get the right answer | multiplied my elapsed
time by one million and added microseconds:

324

DB2 UDB/V8.1 Cookbook ©

WITH TEMP1 (BGN TSTAMP, ELP_SEC) AS
(VALUES (TIMESTAMP (’2001-01-15-01.02.03.000000’), 1.234)
, (TIMESTAMP (’2001-01-15-01.02.03.123456"), 1.234)
)
SELECT BGN_TSTAMP
,ELP_SEC
,BGN_TSTAMP + (ELP_SEC *1E6) MICROSECONDS AS END TSTAMP
FROM TEMP1;

ANSWER

BGN_TSTAMP ELP_SEC END TSTAMP
2001-01-15-01.02.03.000000 1.234 2001-01-15-01.02.04.234000
2001-01-15-01.02.03.123456 1.234 2001-01-15-01.02.04.357456

Figure 862, Date/Time manipulation - right

DB2 doesn't use the fractional part of a number in date/time cal culations because such avalue
often makes no sense. For example, 3.3 months or 2.2 years are meaningless values - given
that neither amonth nor ayear has a fixed length.

The Solution

When one has afractiona date/time value (e.g. 5.1 days, 4.2 hours, or 3.1 seconds) that isfor
aperiod of fixed length that one wants to use in a date/time cal culation, then one hasto con-
vert the value into some whole number of a more precise time period. Thus 5.1 days times
82,800 will give one the equivalent number of seconds and 6.2 seconds times 1E6 (i.e. one
million) will give one the equivalent number of microseconds.

Use of LIKE on VARCHAR

Sometimes one value can be EQUAL to another, but is not LIKE the same. To illustrate, the
following SQL refersto two fields of interest, one CHAR, and the other VARCHAR. Ob-
serve below that both rows in these two fields are seemingly equal:

WITH TEMP1 (CO,C1,V1) AS (VALUES ANSWER
("A",CHAR(" ’,1),VARCHAR(' ',1)), ======
("B’ ,CHAR(" ',1),VARCHAR('" ,1))) Cco

SELECT CO --

FROM TEMP1 A

WHERE Cl1 = V1 B

AND C1 LIKE ' ';
Figure 863, Use LIKE on CHAR field

Look what happens when we change the final predicate from matching on C1 to V1. Now
only one row matches our search criteria.

WITH TEMP1 (CO,C1,V1) AS (VALUES ANSWER
(A" ,CHAR(" ',1),VARCHAR(' ’,1)), ======
("B’ ,CHAR(’ ’,1),VARCHAR('’ ,1))) Cco

SELECT CO -

FROM TEMP1 A

WHERE Cl1 = V1
AND V1 LIKE ' ';

Figure 864, Use LIKE on VARCHAR field

To explain, observe that one of the VARCHAR rows above has one blank byte, while the
other has no data. When an EQUAL check isdone on aVARCHAR field, the value is padded
with blanks (if needed) before the match. Thisiswhy C1 equals C2 for both rows. However,

Quirks in SQL 325

Graeme Birchall ©

the LIKE check does not pad VARCHAR fields with blanks. So the LIKE test in the second
SQL statement only matched on one row.

The RTRIM function can be used to remove all trailing blanks and so get around this prob-
lem:

WITH TEMP1 (CO0,C1,V1) AS (VALUES
("A’ ,CHAR(’ ’,1),VARCHAR(' ',1)),
("B’ ,CHAR(’ ',1),VARCHAR('’ ,1))) Co

SELECT CO --

FROM TEMP1 A

WHERE C1 = V1 B

AND RTRIM(V1) LIKE '’;

Figure 865, Use RTRIM to removetrailing blanks

Comparing Weeks

One often wants to compare what happened in part of one year against the same period in
another year. For example, one might compare January sales over a decade period. This may
be a perfectly valid thing to do when comparing whole months, but it rarely makes sense
when comparing weeks or individual days.

The problem with comparing weeks from one year to the next is that the same week (as de-
fined by DB2) rarely encompasses the same set of days. The following query illustrates this
point by showing the set of days that make up week 33 over aten-year period. Observe that
some years have almost no overlap with the next:

WITH TEMP1 (YYMMDD) AS ANSWER
(VALUES DATE ('2000-01-01") ==========================
UNION ALL YEAR MIN DT MAX DT
SELECT YYMMDD + 1 DAY m==m o mmmmmmm — e ———— -
FROM TEMP1 2000 2000-08-06 2000-08-12
WHERE YYMMDD < ‘2010-12-31' 2001 2001-08-12 2001-08-18
) 2002 2002-08-11 2002-08-17
SELECT YY AS YEAR 2003 2003-08-10 2003-08-16
, CHAR (MIN (YYMMDD) , ISO) AS MIN DT 2004 2004-08-08 2004-08-14
, CHAR (MAX (YYMMDD) , ISO) AS MAX DT 2005 2005-08-07 2005-08-13
FROM (SELECT YYMMDD 2006 2006-08-13 2006-08-19
, YEAR (YYMMDD) YY 2007 2007-08-12 2007-08-18
,WEEK (YYMMDD) WK 2008 2008-08-10 2008-08-16
FROM TEMP1 2009 2009-08-09 2009-08-15
WHERE WEEK(YYMMDD) = 33 2010 2010-08-08 2010-08-14
)AS XXX

GROUP BY YY

, WK;

Figure 866, Comparing week 33 over 10 years

DB2 Truncates, not Rounds

When converting from one numeric type to another where there is aloss of precision, DB2
always truncates not rounds. For this reason, the S1 result below is not equal to the S2 resullt:

SELECT

FROM

SUM (INTEGER (SALARY)) AS S1
INTEGER (SUM (SALARY)) AS S2
STAFF;

Figure 867, DB2 data truncation

If one must do scalar conversions before the column function, use the ROUND function to
improve the accuracy of the result:

326

583633 583647

DB2 UDB/V8.1 Cookbook ©

SELECT SUM(INTEGER (ROUND (SALARY,-1))) AS S1 ANSWER
, INTEGER (SUM (SALARY)) AS S2 =============
FROM STAFF; S1 S2

583640 583647
Figure 868, DB2 data rounding

CASE Checks in Wrong Sequence

The case WHEN checks are processed in the order that they are found. The first one that
matchesis the one used. To illustrate, the following statement will always return the value
'FEM’ in the SXX field:

SELECT LASTNAME ANSWER
,SEX —================
, CASE LASTNAME SX SXX
WHEN SEX »= 'F’ THEN 'FEM’ ————mmmmoo o -
WHEN SEX >= ‘M’ THEN ’'MAL’ JEFFERSON M FEM
END AS SXX JOHNSON F FEM
FROM EMPLOYEE JONES M FEM
WHERE LASTNAME LIKE ’'J%’
ORDER BY 1;

Figure 869, Case WHEN Processing - Incorrect
By contrast, in the next statement, the SXX value will reflect the related SEX value:

SELECT LASTNAME ANSWER
, SEX =================
, CASE LASTNAME SX SXX
WHEN SEX >= 'M’ THEN ’'MAL’ = =—=----=-=---- -- ---
WHEN SEX >= 'F’ THEN ’'FEM’ JEFFERSON M MAL
END AS SXX JOHNSON F FEM
FROM EMPLOYEE JONES M MAL
WHERE LASTNAME LIKE 'J%’

ORDER BY 1;
Figure 870, Case WHEN Processing - Correct

NOTE: See page 32 for more information on this subject.

Division and Average

The following statement gets two results, which is correct?

SELECT AVG (SALARY) / AVG(COMM) AS Al ANSWER >>> Al A2
,AVG (SALARY / COMM) AS A2 - === --
FROM STAFF; 32 61.98

Figure 871, Division and Average

Arguably, either answer could be correct - depending upon what the user wants. In practice,
the first answer is almost always what they intended. The second answer is somewhat flawed
because it gives no weighting to the absolute size of the valuesin each row (i.e. abig SAL-
ARY divided by abig COMM isthe same as asmall divided by asmall).

Date Output Order

DB2 has ahbind option (called DATETIME) that specifies the default output format of date-
time data. This bind option has no impact on the sequence with which date-time datais pre-
sented. It simply defines the output template used. To illustrate, the plan that was used to run
the following SQL defaults to the USA date-time-format bind option. Observe that the month
isthefirst field printed, but the rows are sequenced by year:

Quirks in SQL 327

Graeme Birchall ©

SELECT HIREDATE ANSWER
FROM EMPLOYEE —=========
WHERE HIREDATE < '1960-01-01" 05/05/1947
ORDER BY 1; 08/17/1949
05/16/1958

Figure 872, DATE output in year, month, day order

When the CHAR function is used to convert the date-time value into a character value, the
sort order is now afunction of the display sequence, not the internal date-time order:

SELECT CHAR (HIREDATE, USA) ANSWER
FROM EMPLOYEE —=========
WHERE HIREDATE < ’1960-01-01" 05/05/1947
ORDER BY 1; 05/16/1958
08/17/1949

Figure 873, DATE output in month, day, year order

In general, always bind plans so that date-time values are displayed in the preferred format.
Using the CHAR function to change the format can be unwise.

Ambiguous Cursors

The following pseudo-code will fetch al of the rowsin the STAFF table (which has ID’s
ranging from 10 to 350) and, then while still fetching, insert new rows into the same STAFF
table that are the same as those already there, but with ID’s that are 500 larger.

EXEC-SQL
DECLARE FRED CURSOR FOR
SELECT *
FROM STAFF
WHERE ID < 1000
ORDER BY 1ID;

END-EXEC;

EXEC-SQL
OPEN FRED

END-EXEC;

DO UNTIL SQLCODE = 100;

EXEC-SQL

FETCH FRED

INTO :HOST-VARS
END-EXEC;

IF SQLCODE <> 100 THEN DO;
SET HOST-VAR.ID = HOST-VAR.ID + 500;
EXEC-SQL
INSERT INTO STAFF VALUES (:HOST-VARS)
END-EXEC;
END-DO;

END-DO;

EXEC-SQL
CLOSE FRED
END-EXEC;

Figure 874, Ambiguous Cursor

We want to know how many rows will be fetched, and so inserted? The answer isthat it de-
pends upon the indexes available. If thereisanindex on ID, and the cursor uses that index for
the ORDER BY, there will 70 rows fetched and inserted. If the ORDER BY isdoneusing a
row sort (i.e. at OPEN CURSOR time) only 35 rows will be fetched and inserted.

328

DB2 UDB/V8.1 Cookbook ©

Be aware that DB2, unlike some other database products, does NOT (always) retrieve al of
the matching rows at OPEN CURSOR time. Furthermore, understand that this is a good thing
for it means that DB2 (usually) does not process any row that you do not need.

DB2 isvery good at aways returning the same answer, regardless of the access path used. It
isequally good at giving consistent results when the same logical statement iswrittenina
different manner (e.g. A=B vs. B=A). What it has never done consistently (and never will) is
guarantee that concurrent read and write statements (being run by the same user) will always
give the same resullts.

Floating Point Numbers

The following SQL repetitively multiplies a floating-point number by ten:

WITH TEMP (F1l) AS

(VALUES FLOAT (1.23456789)
UNION ALL

SELECT F1 * 10

FROM TEMP

WHERE F1 < 1E18

)

SELECT F1 AS FLOAT1
,DEC(F1,19) AS DECIMAL1
,BIGINT (F1) AS BIGINT1

FROM TEMP;

Figure 875, Multiply floating-point number by ten, SQL
After awhile, things get interesting:

FLOAT1 DECIMAL1 BIGINT1
+1.23456789000000E+000 1. 1
+1.23456789000000E+001 12. 12
+1.23456789000000E+002 123. 123
+1.23456789000000E+003 1234. 1234
+1.23456789000000E+004 12345. 12345
+1.23456789000000E+005 123456. 123456
+1.23456789000000E+006 1234567. 1234567
+1.23456789000000E+007 12345678. 12345678
+1.23456789000000E+008 123456789. 123456788
+1.23456789000000E+009 1234567890. 1234567889
+1.23456789000000E+010 12345678900. 12345678899
+1.23456789000000E+011 123456789000. 123456788999
+1.23456789000000E+012 1234567890000. 1234567889999
+1.23456789000000E+013 12345678900000. 12345678899999
+1.23456789000000E+014 123456789000000. 123456788999999
+1.23456789000000E+015 1234567890000000. 1234567889999999
+1.23456789000000E+016 12345678900000000. 12345678899999998
+1.23456789000000E+017 123456789000000000. 123456788999999984

+1.23456789000000E+018 1234567890000000000. 1234567889999999744
Figure 876, Multiply floating-point number by ten, answer

Why do the bigint values differ from the original float values? The answer isthat they don't, it
isthe decimal values that differ. Because thisis not what you seein front of your eyes, we
need to explain. Note that there are no bugs here, everything is working fine.

Perhaps the most insidious problem involved with using floating point numbersis that the
number you seeis not aways the number that you have. DB2 stores the value internally in
binary format, and when it displaysit, it shows a decimal approximation of the underlying
binary value. This can cause you to get very strange results like the following:

Quirks in SQL 329

Graeme Birchall ©

WITH TEMP (F1,F2) AS
(VALUES (FLOAT (1.23456789E1 * 10 * 10 * 10 * 10 * 10 * 10 * 10)
,FLOAT (1.23456789E8)))

SELECT F1
,F2
FROM TEMP ANSWER

WHERE Fl <> F2; R T L L L E

+1.23456789000000E+008 +1.23456789000000E+008
Figure 877, Two numbers that look equal, but aren’t equal

We can use the HEX function to show that, internally, the two numbers being compared
above are not equd:

WITH TEMP (F1,F2) AS

(VALUES (FLOAT(1.23456789E1 * 10 * 10 * 10 * 10 * 10 * 10 * 10)

,FLOAT (1.23456789E8)))
SELECT HEX(F1) AS HEX F1
,HEX (F2) AS HEX F2
FROM TEMP ANSWER
WHERE Fl <> F2; m———————————————————————————————=

FFFFFF53346F9D41 00000054346F9D41
Figure 878, Two numbers that look equal, but aren't equal, shown in HEX

Now we can explain what is going on in the recursive code shown at the start of this section.
The same value is be displayed using three different methods:

o Thefloating-point representation (on the left) isreally a decimal approximation (done
using rounding) of the underlying binary value.

e When the floating-point data was converted to decimal (in the middle), it was rounded
using the same method that is used when it is displayed directly.

¢ When the floating-point data was converted to bigint (on the right), no rounding was
done because both formats hold binary values.

In any computer-based number system, when you do division, you can get imprecise results
due to rounding. For example, when you divide 1 by 3 you get "one third", which can not be
stored accurately in either a decimal or abinary number system. Because they store numbers
internally differently, dividing the same number in floating-point vs. decimal can resultin
different results. Here is an example:

WITH

TEMP1 (DEC1, DBL1l) AS
(VALUES (DECIMAL(1l),DOUBLE(1)))
,TEMP2 (DEC1, DEC2, DBL1l, DBL2) AS

(SELECT DEC1
,DEC1 / 3 AS DEC2

,DBL1 ANSWER (1 row returned)
,DBL1 / 3 AS DBL2 —=—===========================
FROM TEMP1) DEC1 1.0
SELECT * DEC2 0.33333333333333333333

FROM TEMP2 DBL1
WHERE DBL2 <> DEC2; DBL2

Figure 879, Comparing float and decimal division

+1.00000000000000E+000
+3.33333333333333E-001

When you do multiplication of afractional floating-point number, you can aso encounter
rounding differences with respect to decimal. To illustrate this, the following SQL starts with
two numbers that are the same, and then keeps multiplying them by ten:

330

DB2 UDB/V8.1 Cookbook ©

WITH TEMP (F1, D1) AS
(VALUES (FLOAT (1.23456789)
,DEC(1.23456789,20,10))

UNION ALL
SELECT F1 * 10
,D1 * 10

FROM TEMP
WHERE F1 < 1E9
)

SELECT F1
,D1
, CASE
WHEN D1 = F1 THEN ’'SAME’
ELSE 'DIFF’

END AS COMPARE
FROM TEMP;

Figure 880, Comparing float and decimal multiplication, SQL

Hereis the answer:

F1l D1 COMPARE
+1.23456789000000E+000 1.2345678900 SAME
+1.23456789000000E+001 12.3456789000 SAME
+1.23456789000000E+002 123.4567890000 DIFF
+1.23456789000000E+003 1234.56789500000 DIFF
+1.23456789000000E+004 12345.6789000000 DIFF
+1.23456789000000E+005 123456.7890000000 DIFF
+1.23456789000000E+006 1234567.8900000000 SAME
+1.23456789000000E+007 12345678.9000000000 DIFF

+1.23456789000000E+008 123456789.0000000000 DIFF
+1.23456789000000E+009 1234567890.0000000000 DIFF

Figure 881, Comparing float and decimal multiplication, answer

Aswe mentioned earlier, both floating-point and decimal fields have trouble accurately stor-
ing certain fractional values. For example, neither can store "one third". There are aso some
numbers that can be stored in decimal, but not in floating-point. One common valueis "one
tenth", which as the following SQL shows, is approximated in floating-point:

WITH TEMP (F1) AS ANSWER
(VALUES FLOAT(0.1)) =======================================
SELECT F1 F1 HEX_ F1

JHEX (F1) AS HEX F1 = —mmmmmmmmmmmmmmmmmmmmm oo Do
FROM TEMP; +1.00000000000000E-001 9A9999999999B9I3F

Figure 882, Internal representation of "one tenth" in floating-point

In conclusion, afloating-point number is, in many ways, only an approximation of atruein-
teger or decimal value. For this reason, this field type should not be used for monetary data,
nor for other data where exact precision is required.

Legally Incorrect SQL

Imagine that we have a cute little view that is defined thus:
CREATE VIEW DAMN LAWYERS (DB2 ,V5) AS

(VALUES (0001,2)
,(1234,2));
Figure 883, Sample view definition

Now imagine that we run the following query against this view:

Quirks in SQL 331

Graeme Birchall ©

SELECT DB2/V5 AS ANSWER ANSWER
FROM DAMN LAWYERS; . mmm e

Figure 884, Trademark Invalid SQL

Interestingly enough, the above answer is technically correct but, according to IBM, the SQL
(actually, they were talking about something else, but it also appliesto this SQL) is not quite
right. We have been informed (in writing), to quote: "try not to use the slash after 'DB2’. That
isaninvalid way to use the DB2 trademark - nothing can be attached to 'DB2'." So, as per
IBM'’s trademark requirements, we have changed the SQL thus:

SELECT DB2 / V5 AS ANSWER ANSWER
FROM DAMN LAWYERS; . mmmeee

Figure 885, Trademark Valid SQL

Fortunately, we still get the same (correct) answer.

332

DB2 UDB/V8.1 Cookbook ©

Appendix

DB2 Sample Tables

Class Schedule

CREATE TABLE CL_SCHED

(CLASS_CODE

, DAY
, STARTING
, ENDING

CHARACTER
SMALLINT
TIME
TIME) ;

(00007)

Figure 886, CL_SCHED sample table - DDL

There is no sample data for thistable.

Department
CREATE TABLE DEPARTMENT
(DEPTNO CHARACTER (00003) NOT NULL
, DEPTNAME VARCHAR (00029) NOT NULL
, MGRNO CHARACTER (00006)
, ADMRDEPT CHARACTER (00003) NOT NULL
, LOCATION CHARACTER (00016)
, PRIMARY KEY (DEPTNO)) ;
Figure 887, DEPARTMENT sample table - DDL
DEPTNO DEPTNAME MGRNO ADMRDEPT
200 SPIFFY COMPUTER SERVICE DIV. 000010 A00
BO1 PLANNING 000020 A00
co1l INFORMATION CENTER 000030 A00
DO1 DEVELOPMENT CENTER - AO0O
D11 MANUFACTURING SYSTEMS 000060 DO1
D21 ADMINISTRATION SYSTEMS 000070 DO1
E01 SUPPORT SERVICES 000050 A00
E1l1l OPERATIONS 000090 EO1
E21 SOFTWARE SUPPORT 000100 EO1
Figure 888, DEPARTMENT sample table - Data
Employee
CREATE TABLE EMPLOYEE
(EMPNO CHARACTER (00006) NOT NULL
, FIRSTNME VARCHAR (00012) NOT NULL
,MIDINIT CHARACTER (00001) NOT NULL
, LASTNAME VARCHAR (00015) NOT NULL
, WORKDEPT CHARACTER (00003)
, PHONENO CHARACTER (00004)
, HIREDATE DATE
,JOB CHARACTER (00008)
, EDLEVEL SMALLINT NOT NULL
, SEX CHARACTER (00001)
, BIRTHDATE DATE
, SALARY DECIMAL (09,02)
, BONUS DECIMAL (09,02)
, COMM DECIMAL (09,02)

, PRIMARY KEY (EMPNO)) ;
Figure 889, EMPLOYEE sampletable - DDL

Appendix

LOCATION

333

S BIRTHDTE

19330824
19480202
19410511
19250915
19450707
19530526
19410515
19561218
19291105
19421018
19250915
19460119
19470517
19550412
19510105
19490221
19520625
19410529
19530223
19480319
19350530
19540331
19391112
19361005
19530526
19360328
19460709
19361027
19310421
19320811
19410718
19260517

EEREHMREMNAMRERERNERERRENMEANRAAMERREERAREREA

NULL
NULL
NULL

EMENDATE

11/01/1982
02/01/1983
07/01/1982
09/15/1982
01/01/1983
01/01/1983
02/01/1983
02/01/1983
02/01/1983
02/01/1983
02/01/1983
03/01/1982
10/01/1982

SALRY

52750
41250
38250
40175
32250
36170
29750
26150
46500
29250
23800
28420
25280
22250
24680
21340
20450
27740
18270
29840
22180
28760
19180
17250
27380
26250
15340
17750
15900
19950
25370
23840

Graeme Birchall ©

EMPNO FIRSTNME M LASTNAME WKD HIREDATE JOB ED
000010 CHRISTINE I HAAS AQ0 01/01/1965 PRES 18
000020 MICHAEL L THOMPSON B0l 10/10/1973 MANAGER 18
000030 SALLY A KWAN C01 04/05/1975 MANAGER 20
000050 JOHN B GEYER EO01 08/17/1949 MANAGER 16
000060 IRVING F STERN D11 09/14/1973 MANAGER 16
000070 EVA D PULASKI D21 09/30/1980 MANAGER 16
000090 EILEEN W HENDERSON E11 08/15/1970 MANAGER 16
000100 THEODORE Q SPENSER E21 06/19/1980 MANAGER 14
000110 VINCENZO G LUCCHESSI A00 05/16/1958 SALESREP 19
000120 SEAN O’ CONNELL A00 12/05/1963 CLERK 14
000130 DOLORES M QUINTANA CO01 07/28/1971 ANALYST 16
000140 HEATHER A NICHOLLS CO01 12/15/1976 ANALYST 18
000150 BRUCE ADAMSON D11 02/12/1972 DESIGNER 16
000160 ELIZABETH R PIANKA D11 10/11/1977 DESIGNER 17
000170 MASATOSHI J YOSHIMURA D11 09/15/1978 DESIGNER 16
000180 MARILYN S SCOUTTEN D11 07/07/1973 DESIGNER 17
000190 JAMES H WALKER D11 07/26/1974 DESIGNER 16
000200 DAVID BROWN D11 03/03/1966 DESIGNER 16
000210 WILLIAM T JONES D11 04/11/1979 DESIGNER 17
000220 JENNIFER K LUTZ D11 08/29/1968 DESIGNER 18
000230 JAMES J JEFFERSON D21 11/21/1966 CLERK 14
000240 SALVATORE M MARINO D21 12/05/1979 CLERK 17
000250 DANIEL S SMITH D21 10/30/1969 CLERK 15
000260 SYBIL P JOHNSON D21 09/11/1975 CLERK 16
000270 MARIA L PEREZ D21 09/30/1980 CLERK 15
000280 ETHEL R SCHNEIDER E11 03/24/1967 OPERATOR 17
000290 JOHN R PARKER E1l 05/30/1980 OPERATOR 12
000300 PHILIP X SMITH E1l 06/19/1972 OPERATOR 14
000310 MAUDE F SETRIGHT E11 09/12/1964 OPERATOR 12
000320 RAMLAL V MEHTA E21 07/07/1965 FIELDREP 16
000330 WING LEE E21 02/23/1976 FIELDREP 14
000340 JASON R GOUNOT E21 05/05/1947 FIELDREP 16

Figure 890, EMPLOYEE sample table - Data

Employee Activity
CREATE TABLE EMP_ACT
(EMPNO CHARACTER (00006) NOT
, PROJNO CHARACTER (00006) NOT
,ACTNO SMALLINT NOT
,EMPTIME DECIMAL (05,02)
, EMSTDATE DATE
, EMENDATE DATE) ;

Figure 891, EMP_ACT sampletable - DDL
EMPNO PROJNO ACTNO EMPTIME EMSTDATE
000010 MA2100 10 0.50 01/01/1982
000010 MA2110 10 1.00 01/01/1982
000010 AD3100 10 0.50 01/01/1982
000020 PL2100 30 1.00 01/01/1982
000030 IF1000 10 0.50 06/01/1982
000030 1IF2000 10 0.50 01/01/1982
000050 OP1000 10 0.25 01/01/1982
000050 OP2010 10 0.75 01/01/1982
000070 AD3110 10 1.00 01/01/1982
000090 OP1010 10 1.00 01/01/1982
000100 OP2010 10 1.00 01/01/1982
000110 MA2100 20 1.00 01/01/1982
000130 1IF1000 90 1.00 01/01/1982
000130 IF1000 100 0.50 10/01/1982

Figure 892, EMP_ACT sampletable - Data (1 of 2)

334

01/01/1983

DB2 Sample Tables

DB2 UDB/V8.1 Cookbook ©

000140
000140
000140
000140
000140
000150
000150
000160
000170
000170
000170
000180
000190
000190
000200
000200
000210
000210
000220
000230
000230
000230
000230
000230
000240
000240
000250
000250
000250
000250
000250
000250
000250
000250
000250
000250
000260
000260
000260
000260
000260
000260
000260
000270
000270
000270
000270
000270
000270
000270
000280
000290
000300
000310
000320
000320
000330
000330
000340
000340

PROJNO
IF1000
IF2000
IF2000
IF2000
IF2000
MA2112
MA2112
MA2113
MA2112
MA2112
MA2113
MA2113
MA2112
MA2112
MA2111
MA2111
MA2113
MA2113
MA2111
AD3111
AD3111
AD3111
AD3111
AD3111
AD3111
AD3111
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
AD3113
OP1010
OP1010
OP1010
OP1010
OP2011
OP2011
0OP2012
OP2012
OP2013
OP2013

ACTNO

140
150
140
160
140
170

EMPTIME

coocoocooorHrHFHFPRHRPRORPRPROOHOOHOOHPFROOOOOHOHOOHHFHFFROOORRKPRPOOHHFREFEFEFEFPFEFERPREPRPRPPOOORO

EMSTDATE

10/01/1982
01/01/1982
03/01/1982
03/01/1982
10/01/1982
01/01/1982
07/15/1982
07/15/1982
01/01/1982
06/01/1982
01/01/1982
04/01/1982
02/01/1982
10/01/1982
01/01/1982
06/15/1982
10/01/1982
10/01/1982
01/01/1982
01/01/1982
03/15/1982
03/15/1982
04/15/1982
10/15/1982
02/15/1982
09/15/1982
01/01/1982
02/01/1982
12/01/1982
01/01/1983
02/01/1982
03/15/1982
08/15/1982
08/15/1982
10/15/1982
08/15/1982
06/15/1982
07/01/1982
01/01/1982
03/01/1982
03/01/1982
04/15/1982
06/01/1982
03/01/1982
04/01/1982
09/01/1982
09/01/1982
10/15/1982
01/01/1982
03/01/1982
01/01/1982
01/01/1982
01/01/1982
01/01/1982
01/01/1982
01/01/1982
01/01/1982
01/01/1982
01/01/1982
01/01/1982

Figure 893, EMP_ACT sampletable - Data (2 of 2)

Appendix

EMENDATE
01/01/1983
03/01/1982
07/01/1982
07/01/1982
01/01/1983
07/15/1982
02/01/1983
02/01/1983
06/01/1983
02/01/1983
02/01/1983
06/15/1982
10/01/1982
10/01/1983
06/15/1982
02/01/1983
02/01/1983
02/01/1983
02/01/1983
03/15/1982
04/15/1982
10/15/1982
10/15/1982
01/01/1983
09/15/1982
01/01/1983
02/01/1982
03/15/1982
01/01/1983
02/01/1983
03/15/1982
08/15/1982
10/15/1982
10/15/1982
12/01/1982
01/01/1983
07/01/1982
02/01/1983
03/01/1982
04/15/1982
04/15/1982
06/01/1982
07/01/1982
04/01/1982
09/01/1982
10/15/1982
10/15/1982
02/01/1983
03/01/1982
04/01/1982
02/01/1983
02/01/1983
02/01/1983
02/01/1983
02/01/1983
02/01/1983
02/01/1983
02/01/1983
02/01/1983
02/01/1983

335

Employee

CREATE TABLE EMP_PHOTO

(EMPNO
, PHOTO_F
, PICTURE

000130
000130
000130
000140
000140
000140
000150
000150
000150
000190
000190
000190

Photo

CHARACTER (00006)
ORMAT VARCHAR
BLOB
, PRIMARY KEY (EMPNO, PHOTO_ FORMAT)) ;

Figure 894, EMP_PHOTO sampletable - DDL
PICTURE

PHOTO_FORMAT

bitmap
gif
xwd
bitmap
gif
xwd

<<NOT

(00010)
(0100)K

SHOWN>>
SHOWN > >

Figure 895, EMP_PHOTO sampletable - Data

Employee

Resume

CREATE TABLE EMP_RESUME
CHARACTER (00006)

FORMAT VARCHAR
CLOB

, PRIMARY KEY (EMPNO, RESUME_FORMAT)) ;

Figure 896, EMP_RESUME sample table - DDL

(EMPNO
,RESUME__
, RESUME

000130
000130
000140
000140
000150
000150
000190
000190

RESUME_FORMAT
ascii

script

ascii

script

ascii

script

ascii

script

(00010)
(0005)K

RESUME

SHOWN> >
SHOWN> >
SHOWN> >
SHOWN> >
SHOWN> >
SHOWN> >
SHOWN> >
SHOWN> >

Figure 897, EMP_RESUME sampletable - Data

In Tray

CREATE TABLE IN TRAY

D TIMESTAMP
CHARACTER (00008)
CHARACTER (00064)

XT VARCHAR

Figure 898, IN_TRAY sample table - DDL

There is no sample data for this table.

(RECEIVE
, SOURCE
, SUBJECT
,NOTE TE

336

(03000)) ;

NOT NULL
NOT NULL

NOT NULL
NOT NULL

Graeme Birchall ©

DB2 Sample Tables

DB2 UDB/V8.1 Cookbook ©

Organization

CREATE TABLE ORG

(DEPTNUMB SMALLINT NOT NULL
, DEPTNAME VARCHAR (00014)
, MANAGER SMALLINT
,DIVISION VARCHAR (00010)
, LOCATION VARCHAR (00013)
,PRIMARY KEY (DEPTNUMB)) ;
Figure 899, ORG sampletable - DDL
DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION
10 Head Office 160 Corporate New York
15 New England 50 Eastern Boston
20 Mid Atlantic 10 Eastern Washington
38 South Atlantic 30 Eastern Atlanta
42 Great Lakes 100 Midwest Chicago
51 Plains 140 Midwest Dallas
66 Pacific 270 Western San Francisco
84 Mountain 290 Western Denver
Figure 900, ORG sample table - Data
Project
CREATE TABLE PROJECT
(PROJNO CHARACTER (00006) NOT NULL
, PROONAME VARCHAR (00024) NOT NULL
, DEPTNO CHARACTER (00003) NOT NULL
, RESPEMP CHARACTER (00006) NOT NULL
, PRSTAFF DECIMAL (05,02)
, PRSTDATE DATE
, PRENDATE DATE
, MAJPROJ CHARACTER (00006)
, PRIMARY KEY (PROJNO)) ;
Figure 901, PROJECT sample table - DDL
PROJNO PROJNAME DP# RESEMP PRSTAFF PRSTDATE PRENDATE MAJPRJ
AD3100 ADMIN SERVICES DO1 000010 6.50 01/01/1982 02/01/1983
AD3110 GENERAL ADMIN SYSTEMS D21 000070 6.00 01/01/1982 02/01/1983 AD3100
AD3111 PAYROLL PROGRAMMING D21 000230 2.00 01/01/1982 02/01/1983 AD3110
AD3112 PERSONNEL PROGRAMMING D21 000250 1.00 01/01/1982 02/01/1983 AD3110
AD3113 ACCOUNT PROGRAMMING D21 000270 2.00 01/01/1982 02/01/1983 AD3110
IF1000 QUERY SERVICES C01 000030 2.00 01/01/1982 02/01/1983 -
IF2000 USER EDUCATION C01 000030 1.00 01/01/1982 02/01/1983 -
MA2100 WELD LINE AUTOMATION DOl 000010 12.00 01/01/1982 02/01/1983 -
MA2110 W L PROGRAMMING D11 000060 9.00 01/01/1982 02/01/1983 MA2100
MA2111 W L PROGRAM DESIGN D11 000220 2.00 01/01/1982 12/01/1982 MA2110
MA2112 W L ROBOT DESIGN D11 000150 3.00 01/01/1982 12/01/1982 MA2110
OP1000 OPERATION SUPPORT E01 000050 6.00 01/01/1982 02/01/1983 -
OP1010 OPERATION E11 000090 5.00 01/01/1982 02/01/1983 OP1000
OP2000 GEN SYSTEMS SERVICES EO1 000050 5.00 01/01/1982 02/01/1983 -
MA2113 W L PROD CONT PROGS D11 000160 3.00 02/15/1982 12/01/1982 MA2110
OP2010 SYSTEMS SUPPORT E21 000100 4.00 01/01/1982 02/01/1983 0OP2000
OP2011 SCP SYSTEMS SUPPORT E21 000320 1.00 01/01/1982 02/01/1983 OP2010
OP2012 APPLICATIONS SUPPORT E21 000330 1.00 01/01/1982 02/01/1983 OP2010
OP2013 DB/DC SUPPORT E21 000340 1.00 01/01/1982 02/01/1983 OP2010
PL2100 WELD LINE PLANNING BO1 000020 1.00 01/01/1982 09/15/1982 MA2100

Figure 902, PROJECT sample table - Data

Appendix

337

Sales

CREATE TABL
(SALES_DATE
,SALES_PERS
,REGION

, SALES

E SALES

ON

DATE
VARCHAR
VARCHAR
INTEGER) ;

(00015)
(00015)

Figure 903, SALES sample table - DDL

SALES DATE SALES_ PERSON

12/31/1995
12/31/1995
12/31/1995
12/31/1995
12/31/1995
03/29/1996
03/29/1996
03/29/1996
03/29/1996
03/29/1996
03/29/1996
03/29/1996
03/29/1996
03/29/1996
03/30/1996
03/30/1996
03/30/1996
03/30/1996
03/30/1996
03/30/1996
03/30/1996
03/30/1996
03/30/1996
03/30/1996
03/31/1996
03/31/1996
03/31/1996
03/31/1996
03/31/1996
03/31/1996
03/31/1996
04/01/1996
04/01/1996
04/01/1996
04/01/1996
04/01/1996
04/01/1996
04/01/1996
04/01/1996
04/01/1996
04/01/1996

GOUNOT
LEE

LEE

LEE
LUCCHESSI
GOUNOT
GOUNOT
GOUNOT
LEE

LEE

LEE

LEE
LUCCHESSI
LUCCHESSTI
GOUNOT
GOUNOT
GOUNOT
LEE

LEE

LEE

LEE
LUCCHESSTI
LUCCHESSI
LUCCHESSTI
GOUNOT
GOUNOT
LEE

LEE

LEE

LEE
LUCCHESSI
GOUNOT
GOUNOT
GOUNOT
GOUNOT
LEE

LEE

LEE

LEE
LUCCHESSTI
LUCCHESSI

REGION

Quebec
Manitoba
Ontario-South
Quebec
Ontario-South
Manitoba
Ontario-South
Quebec
Manitoba
Ontario-North
Ontario-South
Quebec
Ontario-South
Quebec
Manitoba
Ontario-South
Quebec
Manitoba
Ontario-North
Ontario-South
Quebec
Manitoba
Ontario-South
Quebec
Ontario-South
Quebec
Manitoba
Ontario-North
Ontario-South
Quebec
Manitoba
Manitoba
Ontario-North
Ontario-South
Quebec
Manitoba
Ontario-North
Ontario-South
Quebec
Manitoba
Ontario-South

Figure 904, SALES sample table - Data

Staff

CREATE TABLE STAFF

(ID

, NAME

, DEPT
,JOB

, YEARS
, SALARY
, COMM

,PRIMARY KEY (ID)) ;
Figure 905, STAFF sample table - DDL

338

SMALLINT
VARCHAR (00009)
SMALLINT
CHARACTER (00005)
SMALLINT
DECIMAL (07,02)
DECIMAL (07,02)

WH OO I OWWRERNRPSIPAPWWENNREFREPIYNWPARONREFRERWWNNUORWNOREREWNDERE

NOT NULL

Graeme Birchall ©

DB2 Sample Tables

DB2 UDB/V8.1 Cookbook ©

170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

Sanders
Pernal
Marenghi
O’Brien
Hanes
Quigley
Rothman
James
Koonitz
Plotz
Ngan
Naughton
Yamaguchi
Fraye
Williams
Molinare
Kermisch
Abrahams
Sneider
Scoutten
Lu

Smith
Lundgquist
Daniels
Wheeler
Jones
Lea
Wilson
Quill
Davis
Graham
Gonzales
Burke
Edwards
Gafney

Figure 906, STAFF sample table - Data

Appendix

YEARS

=

=

=

=
UINPRPARWUIOWVWLOVUNAOAUVTW IO 1 WK JOoOO 1 U101 1 OO0 Ul

SALARY

846.

650.
1152.
128.
1386.

206.
180.
75.

110.
236.
126.
84 .

992.
189.

513.

811.

806.
200.
844 .

55.
1285.
188.

339

Graeme Birchall ©

340 DB2 Sample Tables

DB2 UDB/V8.1 Cookbook ©

Book Binding

Below is a quick-and-dirty technique for making a book out of this book. The object of the
exercise isto have amanual that will last along time, and that will also lie flat when opened
up. All suggested actions are done at your own risk.

Tools Required
Printer, to print the book.
o KNIFE, to trim the tape used to bind the book.

e BINDER CLIPS, (1" size), to hold the pages together while gluing. To bind larger books,
or to do multiple books in one go, use two or more cheap screw clamps.

o CARDBOARD: Two pieces of thick card, to aso help hold things together while gluing.
Consumables

Ignoring the capita costs mentioned above, the cost of making a bound book should work out
to about $4.00 per item, almost al of which is spent on the paper and toner. To bind an al-
ready printed copy should cost less than fifty cents.

e PAPER and TONER, to print the book.
e CARD STOCK, for the front and back covers.

e GLUE, to bind the book. Cheap rubber cement will do the job The glue must come with
an applicator brush in the bottle. Sears hardware stores sell a more potent flavor called
Duro Contact Cement that is quite a bit better. Thisistoxic stuff, so be careful.

e CLOTH TAPE, (2" wide) to bind the spine. Pearl tape, available from Pearl stores, is
fine. Wider tape will be required if you are not printing double-sided.

o TIME: With practice, this process takes | ess than five minutes work per book.
Before you Start

o Makethat sure you have awell-ventilated space before gluing.

e Practice binding on some old scraps of paper.

e Kick all kiddies out off the room.

Instructions

e Print the book - double-sided if you can. If you want, print the first and last pages on card
stock to make suitable protective covers.

e Jog the pages, so that they are al lined up along the inside spine. Make sure that every
page is perfectly aligned, otherwise some pages won't bind. Put a piece of thick card-
board on either side of the set of pagesto be bound. These will hold the pages tight dur-
ing the gluing process.

Book Binding 341

Graeme Birchall ©

Place binder clips on the top and bottom edges of the book (near the spine), to hold eve-
rything in place while you glue. One can also put a couple on the outside edge to stop the
pages from splaying out in the next step. If the pages tend to spread out in the middle of
the spine, put one in the centre of the spine, then work around it when gluing. Make sure
there are no gaps between leafs, where the glue might soak in.

Place the book spine upwards. The objective hereisto have aflat surface to apply the
glue on. Lean the book against something if it does not stand up freely.

Put on gobs of glue. Let it soak into the paper for a bit, then put on some more.
Let the glue dry for at least half an hour. A couple of hours should be plenty.

Remove the binder clipsthat are holding the book together. Be careful because the glue
does not have much structural strength.

Separate the cardboard that was put on either side of the book pages. To do this, carefully
open the cardboard pages up (asif reading their inside covers), then run the knife down
the glue between each board and the rest of the book.

Lay the book flat with the front side facing up. Be careful here because the rubber cement
is not very strong.

Cut the tape to alength that is alittle longer that the height of the book.

Put the tape on the book, lining it up so that about one quarter of an inch (of the tape
width) is on the front side of the book. Press the tape down firmly (on the front side only)
so that it is properly attached to the cover. Make sure that alittle bit of tape sticks out of
both the bottom and top ends of the spine.

Turn the book over (gently) and, from the rear side, wrap the cloth tape around the spine
of the book. Pull the tape around so that it puts the spine under compression.

Trim excess tape at either end of the spine using aknife or pair of scissors.
Tap down the tape so that it is firmly attached to the book.

Let the book dry for aday. Then do the old "hold by asingle leaf" test. Pick any page,
and gently pull the page up into the air. The book should follow without separating from
the page.

More Information

The binding technique that | have described above isfast and easy, but rather crude. It would
not be suitable if one was printing books for sale. There are, however, other binding methods
that take alittle more skill and better gear that can be used to make "store-quality” books. A
good reference on the general subject of home publishing is Book-on-Demand Publishing
(ISBN 1-881676-02-1) by Rupert Evans. The publisher is BlackLightning Publications Inc.
They are on the web (see: www.flashweb.com).

342

DB2 UDB/V8.1 Cookbook ©

Index

A
ABS function, 101
ACOS function, 102
ADD function. See PLUS function
AGGREGATION function, 90
ALIAS, 19
ALL, sub-query, 201, 211
AND vs. OR, precedence rules, 32
ANY, sub-query, 200, 209
Arithmetic, precedence rules, 32
AS statement
Correlation name, 25
Renaming fields, 26
ASCII function, 102
ASIN function, 102
ATAN function, 102
ATOMIC, BEGIN statement, 57
AVG
Compared to median, 314
Date value, 68
Function, 67, 316
Null usage, 68

B

Balanced hierarchy, 265

BEGIN ATOMIC statement, 57

BETWEEN
AGGREGATION function, 95
Predicate, 29

BIGINT function, 102, 329

BLOB function, 103

C
Cartesian Product, 188
CASE expression
Character to number, 297
Definition, 37
Recursive processing, 277
Sample data creation, usage, 285
Selective column output, 302
UPDATE usage, 38
Wrong sequence, 327
Zero divide (avoid), 39
CAST expression
CASE usage, 39
Definition, 33
CEIL function, 103
CHAR function, 104, 300
Character to number, convert, 297
Chart making using SQL, 303
CHR function, 106
Circular Reference. See You are lost
Clean hierarchies, 273
CLOB function, 106
COALESCE function, 106, 190

Index

Common table expression
Definition, 246
Full-select clause, 248

Compound SQL
DECLARE variables, 58
Definition, 57
FOR statement, 59
|F statement, 60
LEAVE statement, 61
Scalar function, 154
SIGNAL statement, 61
Table function, 157
WHILE statement, 61

CONCAT function, 107, 148

Convergent hierarchy, 264

Convert
Character to number, 297
Decimal to character, 301
Integer to character, 300
Timestamp to numeric, 302

Correlated sub-query
Definition, 206
NOT EXISTS, 208

CORRELATION function, 69

Correlation name, 25

COS function, 108

COT function, 108

COUNT DISTINCT function
Definition, 69
Null values, 80

COUNT function
Definition, 69
No rows, 70, 176, 320
Null values, 69

COUNT_BIG function, 70

COVARIANCE function, 70

Create Table
Dimensions, 226
Example, 18
Identity Column, 230, 232
Indexes, 225
Materialized query table, 219
Staging tables, 226

CUBE, 171

D

Datain view definition, 18

Datatypes, 19, 21

DATE
AVG calculation, 68
Function, 109
Manipulation, 321, 324
Output order, 327

DAY function, 109

DAY NAME function, 110

343

DAY OFWEEK function, 110
DAY OFYEAR function, 111
DAY Sfunction, 111
DECIMAL

Convert to character, 301

Function, 112, 302, 329

Multiplication, 32, 126
DECLARE variables, 58
Declared Global Temporary Table, 244, 251
DECRYPT_BIN function, 112
DECRYPT_CHAR function, 112
Deferred Refresh tables, 220
DEGRESS function, 112
DELETE

Counting using triggers, 241

Definition, 46

Full-select, 47

MERGE usage, 53

OLAP functions, 47

Select results, 50
Déelimiter, statement, 17, 57
Denormalize data, 308
DENSE_RANK function, 78
DETERMINISTIC statement, 151
DIFFERENCE function, 113
DIGITS function, 113, 300
DISTINCT, 67, 99
Distinct types, 19, 21
Divergent hierarchy, 263
DIVIDE "/" function, 147
DOUBLE function, 114
Double quotes, 27

E

ENCRYPT function, 114

ESCAPE phrase, 31

EXCEPT, 214

EXISTS, sub-query, 29, 202, 207, 208
EXP function, 115

F
FETCH FIRST clause
Definition, 24
Efficient usage, 88
FLOAT function, 115, 329
Floating-point numbers, 329
FLOOR function, 116
FOR statement, 59
Fractional date manipulation, 324
Full Outer Join
COALESCE function, 190
Definition, 184
Full-select
Definition, 248
DELETE usage, 47
INSERT usage, 41, 42
MERGE usage, 54
TABLE function, 249
UPDATE usage, 44, 45, 251

G

GENERATE_UNIQUE function, 116, 282
GET DIAGNOSTICS statement, 59
GETHINT function, 117

344

Graeme Birchall ©

Global Temporary Table, 244, 251
GROUPBY

CUBE, 171

Definition, 161

GROUPING SETS, 163

Join usage, 176

ORDER BY usage, 175

PARTITION comparison, 98

ROLLUP, 167

Zero rows match, 320
GROUPING function, 71, 165
GROUPING SETS, 163

H
HAVING
Definition, 161
Zero rows match, 320
HEX function, 117, 160, 302, 330
Hierarchy
Balanced, 265
Convergent, 264
Denormalizing, 273
Divergent, 263
Recursive, 264
Summary tables, 273
Triggers, 273
History tables, 289, 292
HOUR function, 118

|
Identity column
IDENTITY_VAL_LOCAL function, 235
Restart value, 233
Usage notes, 229
IDENTITY_VAL_LOCAL function, 118, 235, 242
IF statement, 60
Immediate Refresh tables, 221
IN
Multiple predicates, 207
Predicate, 30
Sub-query, 205, 207
Index on materialized query table, 225
Inner Join
Definition, 180
ON and WHERE usage, 180
Outer followed by inner, 196
INPUT SEQUENCE, 48
INSERT
24-hour timestamp notation, 319
Common table expression, 248
Definition, 40
Full-select, 41, 42, 250
Function, 119
MERGE usage, 52
Select results, 48
INTEGER
Arithmetic, 32
Convert to character, 300
Function, 119
Truncation, 326
INTERSECT, 214
ITERATE statement, 60

DB2 UDB/V8.1 Cookbook ©

J
Join
Cartesian Product, 188
COALESCE function, 190
DISTINCT usage warning, 67
Full Outer Join, 184
GROUP BY usage, 176
Inner Join, 180
Left Outer Join, 181
Null usage, 190
Right Outer Join, 183
Syntax, 177
JULIAN_DAY function
Definition, 119
History, 120

L
LCASE function, 121
LEAVE statement, 61
LEFT function, 122
Left Outer Join, 181
LENGTH function, 122
LIKE predicate
Definition, 30
ESCAPE usage, 31
Varchar usage, 325
LN function, 123
LOCATE function, 123
LOG function, 123
LOG10 function, 123
Lousy Index. See Circular Reference
LTRIM function, 124, 311

M
Matching rows, zero, 320
Materialized Query Table
Syntax diagram, 217
Materialized query tables
DDL restrictions, 219
Dimensions, 226
Index usage, 225
Refresh Deferred, 220
Refresh Immediate, 221
Staging tables, 226
MAX
Function, 71
Rows, getting, 85
Values, getting, 83, 87
Median, 314
MERGE
Definition, 51
DELETE usage, 53
Full-select, 54
INSERT usage, 53
IPDATE usage, 53
MICROSECOND function, 124

MIDNIGHT_SECONDS function, 124

MIN function, 72

MINUS"-" function, 147
MINUTE function, 125
Missing rows, 306

MQOD function, 125

MONTH function, 126
MONTHNAME function, 126

Index

MULITPLY _ALT function, 126
Multiplication, overflow, 126
MULTIPLY "** function, 147

N
Nested table expression, 243
NEXTVAL expression, 238, 242
No rows match, 320
NODENUMBER function, 127
Normalize data, 307
NOT EXISTS, sub-query, 206, 208
NOT IN, sub-query, 205, 208
NOT predicate, 28
NULLIF function, 127
Nulls

CAST expression, 33

COUNT DISTINCT function, 69, 80

COUNT function, 208
Definition, 26

GROUP BY usage, 162
Join usage, 190

Order sequence, 160
Predicate usage, 32
Ranking, 80

(@]

OLAP functions
AGGREGATION function, 90
DELETE usage, 47
DENSE_RANK function, 78
RANK function, 78
ROW_NUMBER function, 84
UPDATE usage, 45

ON vs. WHERE, joins, 179, 180, 182, 184

OPTIMIZE FOR clause, 89
OR vs. AND, precedence rules, 32
ORDER BY
AGGREGATION function, 93
CONCAT function, 107
Date usage, 327
Definition, 159
FETCH FIRST, 25
GROUP BY usage, 175
Nulls processing, 80, 160
RANK function, 79
ROW_NUMBER function, 84
Outer Join
COALESCE function, 190
Definition, 184
ON vs. WHERE, joins, 182, 184
Outer followed by inner, 196
Overflow errors, 126

P

Partition
AGGREGATION function, 98
GROUP BY comparison, 98
RANK function, 81
ROW_NUMBER function, 85

PARTITION function, 127

Percentage calculation, 244

PLUS"+" function, 146

POSSTR function, 128

POWER function, 128

Precedence rules, 32
PREVVAL expression, 238, 242

Q

Quotes, 27

R
RAISE_ERROR function, 129
RAND function
Description, 129
Predicate usage, 322
Random row selection, 132
Reproducable usage, 130
Reproducible usage, 281
RANGE (AGGREGATION function), 97
RANK function, 78
REAL function, 132
Recursion
Fetch first nrows, 90
Halting processing, 266
How it works, 255
Level (in hierarchy), 259
List children, 258
Multiple invocations, 261
Normalize data, 307
Stopping, 266
Warning message, 262
When to use, 255
Recursive hierarchy
Definition, 264
Denormalizing, 274, 276
Triggers, 274, 276
Refresh age, 220
Refresh Deferred tables, 220
Refresh Immediate tables, 221
REGRESSION functions, 72
REPEAT function, 133
REPLACE function, 133
Restart, Identity column, 233
RETURN statement, 152
Reversing values, 310
RIGHT function, 134
Right Outer Join, 183
ROLLUP, 167
ROUND function, 134
ROW_NUMBER function, 84, 315
ROWS (AGGREGATION function), 94
RTRIM function, 134, 311

S
Scalar function, user defined, 151
SELECT
DML changes, 47
SELECT statement
Correlation name, 25
Definition, 22
Full-select, 250
INSERT usage, 42
Random row selection, 132
Syntax diagram, 23
UPDATE usage, 45
Sequence
Create, 237
Multi table usage, 240

346

Graeme Birchall ©

NEXTVAL expression, 238
PREVVAL expression, 238
Sequence numbers. See Identity column
SIGN function, 135
SIGNAL statement, 61
SIN function, 135
SMALLINT function, 135
SOME, sub-query, 200, 209
Sort string, 313
SOUNDEX function, 135
Sourced function, 149
SPACE function, 136
SQLCACHE_SNAPSHOT function, 137
SQRT function, 137
Staging tables, 226
Statement delimiter, 17, 57
STDDEV function, 73
Strip
Functions. See LTRIM or RTRIM
Roll your own, 311
User defined function, 311
Sub-query
Correlated, 206
DELETE usage, 47
Error prone, 200
EXISTS usage, 202, 207
IN usage, 205, 207
Multi-field, 207
Nested, 207
SUBSTR function
Chart making, 303
Definition, 138
SUBTRACT function. See MINUS function
SUM function, 74, 93
Summary tables
Recursive hierarchies, 273

T
Table. See Create Table

Table function, 156

TABLE function, 249
TABLE_NAME function, 139
TABLE_SCHEMA function, 139

Temporary Table
Common table expression, 246
Full select, 248

Global Declared, 244, 251

TABLE function, 249
Terminator,, 17, 57
Test Data. See Sample Data
Time Series data, 286
TIMESTAMP

24-hour notation, 319

Function, 140

Manipulation, 319, 324
TIMESTAMP_FORMAT function, 140
TIMESTAMP_ISO function, 141
TIMESTAMPDIFF function, 141
TO_CHAR function. See VARCHAR_FORMAT
TO_DATE function. See TIMETAMP_FORMAT
TRANSLATE function, 143
Triggers

Delete counting, 241

History tables, 290, 295

DB2 UDB/V8.1 Cookbook ©

Identity column, 234
Recursive hierarchies, 274, 276
Sequence, 240
TRIM. See LTRIM or RTRIM
TRUNCATE function, 143
Truncation, numeric, 326

U

UCASE function, 144

Unbalanced hierarchy, 265

Uncorrelated sub-query, 206
Nested, 207

UNION
INSERT usage, 42
Precedence Rules, 215
Recursion, 256
UNION ALL, 214
View usage, 216

UPDATE
CASE usage, 38
Definition, 43
Full-select, 44, 45, 251
MERGE usage, 52
OLAP functions, 45
Select results, 49

User defined function
Data-type conversion example, 297, 300
Denormalize example, 308
Locate Block example, 268
Recursion usage, 268
Reverse example, 310
Scalar function, 151
Sort string example, 313
Sourced function, 149
Strip example, 311
Table function, 156

Index

V
VALUE function, 144
VALUES expression
Definition, 34
View usage, 36
VARCHAR function, 144
VARCHAR_FORMAT function, 145
VARIANCE function, 74
Versions (history tables), 292
View
Datain definition, 18
DDL example, 18, 19, 36
History tables, 291, 294
UNION usage, 216

W
WEEK function, 145, 326
WEEK_ISO function, 146
WHERE vs. ON, joins, 179, 180, 182, 184
WHILE statement, 61
WITH statement
Defintion, 246
Insert usage, 248
MAX values, getting, 87
Multipletables, 247
Recursion, 256
VALUES expression, 35

Y
YEAR function, 146
You arelost. See Lousy Index

Z
Zero divide (avoid), 39
Zero rows match, 320

347

