C HAPTER

Tuning Application Performance

¢ USING SELECT STATEMENTS
¢ MINIMIZE DATA TRANSMISSION

¢ ENBEDDED SQL PROGRAMS

¢ CLI/ODBC PROGRAMS

¢ CONCURRENCY

When you are trying to design a new database system or analyze an existing
database system, one of the most important considerations you should takeisthe
application design. Even though your database is well designed and tuned,
inappropriate design of applications may cause performance problem. If your
application has a design problem, fixing it often improves the application
performance much more than tuning configuration parameters of DB2 UDB.

For example, SQL isahigh-level language with much flexibility and different
SELECT statements can be written to retrieve the same data; however, the
performance can vary for the different forms of select statements. Thisis because
one statement may have a higher processing cost than another. In such a case, you
should choose the SQL statement which has the lower processing cost, so that the
application will have good performance.

In this section, we will discuss application design considerations to obtain better
performance. They includes:

406 Chapter 6 Tuning Application Performance

« Tipsto write better SQL statements

* Minimizing data transmission between applications and the database
e Considerations for embedded SQL programs

» Considerationsfor ODBC/CLI programs

« Concurrency on database objects

Read this chapter and apply these considerations when you develop or evaluate you
database applications.

Writing Better SQL Statements

DB2 UDB provides the SQL compiler which creates the compiled form of SQL
statements. When the SQL compiler compiles SQL statements, it rewritesinto a
form that can be optimized more easily. Thisis known as query rewrite.

The SQL compiler then generates many alternative execution plans for satisfying

the user’s request. It estimates the execution cost of each alternative plan using the
statistics for tables, indexes, columns, and functions, and chooses the plan with the
smallest execution cost. This is knowngasry optimization.

It is important to note that the SQL compiler (including the query rewrite and
optimization phases) must choose an access plan that will produce the result set for
the query you have coded. Therefore, as noted in many of the following guidelines,
you should code your query to obtain only the data that you need. This ensures that
the SQL compiler can choose the best access plan for your needs.

The guidelines for using $ELECT statement are:

» Specify only needed columns.

e Limit the number of rows.

» Specify the FOR UPDATE clauseif applicable.

e Specify the OPTIMIZED FOR n ROWS clause.

» Specify the FETCH FIRST n ROWS ONLY clauseif applicable.
e Specify the FOR FETCH ONLY clauseif applicable.

» Avoid numeric data type conversion.

Each of these guidelines are further explored in the next section.

Specify Only Needed Columns in the Select List

Specify only those columns that are needed in the select list. Although it may be
simpler to specify all columns with an asterisk (*), needless processing and
returning of unwanted columns can result.

Writing Better SQL Statements 407

Limit the Number of Rows by Using Predicates

Limit the number of rows selected by using predicates to restrict the answer set to
only those rows that you require. There are four categories of predicates and the
processing cost of predicates are different. The category is determined by how and
when that predicateis used in the evaluation process. These categories are listed
below, ordered in terms of performance, starting with the most favorable:

©
O
c
I
IS
S
o
e
o
[
o

» Range delimiting predicates
* Index SARGable predicates
» Data SARGable predicates
¢ Residua predicates

c
o
=
5
L
o
o
<
o
£
c
=
|_

@ Note: SARGable refersto something that can be used as a search
argument.

Range delimiting predicates are those used to bracket an index scan. They provide
start and/or stop key values for the index search. Index SARGable predicates are
not used to bracket a search, but can be evaluated from the index because the
columns involved in the predicate are part of the index key. For example, assume
that an index has been defined on the NAME, DEPT, and YEARS columns of the STAFF
table, and you are executing the following select statement:

SELECT name, job, salary FROM staff

WHERE name = ’John’
dept = 10
years > 5

Thefirst two predicates (name="John’, dept=10) would be range delimiting
predicates, while years > 5 would be an index SARGable predicate, as the start
key value for the index search cannot be determined by thisinformation only. The
start key value may be 6, 10, or even higher. If the predicate for the years column
isyears => 5, it would be arange delimiting predicate, as the index search can
start from the key value 5.

SELECT name, job, salary FROM staff

WHERE name = ’John’
dept = 10
years => 5

408 Chapter 6 Tuning Application Performance

The database manager will make use of the index data in evaluating these
predicates, rather than reading the base table. These range delimiting predicates
and index SARGable predicates reduce the number of data pages accessed by
reducing the set of rows that need to be read from the table. Index SARGable
predicates do not affect the number of index pages that are accessed.

Data SARGabl e Predicates are the predicates that cannot be evaluated by the Index
Manager, but can be evaluated by Data Management Services (DMS). Typically,
these predicates require the access of individua rows from abase table. If required,
Data Management Services will retrieve the columns needed to evaluate the
predicate, aswell as any others to satisfy the columnsin the SELECT list that could
not be obtained from the index.

For example, assume that a single index is defined on the projno column of the
project table but not on the deptno column, and you are executing the following

query:

SELECT projno, projname, repemp FROM project
WHERE deptno=’D11’
ORDER BY projno

The predicate deptno="D11" is considered data SARGable, because there are no
indexes on the deptno column, and the base table must be accessed to evaluate the
predicate.

Residual predicates, typically, are those that require I/O beyond the simple
accessing of a base table. Examples of residual predicates include those using
quantified sub-queries (sub-queries with ANY, ALL, SOME, or IN), or reading LONG
VARCHAR or large object (LOB) data (they are stored separately from the table).

These predicates are evaluated by Relational Data Services (RDS). Residual
predicates are the most expensive of the four categories of predicates.

Asresidual predicates and data SARGable predicates cost more than range
delimiting predicates and index SARGable predicates, you should try to limit the
number of rows qualified by range delimiting predicates and index SARGable
predicates whenever possible.

Let usbriefly look at the following DB2 UDB components: Index Manager, Data
Management Service, and Relational Data Service. Fig. 6-1 shows each DB2 UDB
component and where each category of predicates is processed.

Writing Better SQL Statements 409

' }

Data Management Service |Data SARGable predicates

c

C (@)
Applications = O
© O
o c
' ! s
o £
Relational Data Service Residual predicates < S
2o
£a

c

>

|_

Range delimiting predicates
Index SARGable predicates Index Manager

TN
o)

Fig. 6—1 DB2 UDB Components and Predicates

@ Note: Fig. 6-1 provides a simplified explanation. Actually, DB2 UDB
has more components than are shown in this diagram.

Relational Data Service (RDS) receives SQL requests from applications and
returns the result set. It sends all predicates to Data Management Service (DMS)
except residual predicates. Residual predicates are eva uated by Relational Data
Service (RDS).

DMS evaluates data SARGable predicates. Also, if the select list has columns
which cannot be evaluated by the index search, DM S scans data pages directly.

Index Manager receives range delimiting predicates and index SARGable
predicates from DM S, evaluates them, and then returns row identifiers (RIDs) to
the data page to DMS.

Specify the FOR UPDATE Clause

If you intend to update fetched data, you should specify FOR UPDATE clause in the
SELECT statement of the cursor definition. By doing this, the database manager can
initially choose appropriate locking levels, for instance, U (update) locksinstead of
S (shared) locks. Thus you can save the cost to perform lock conversions from S
locksto U locks when the succeeding UPDATE statement is processed.

410 Chapter 6 Tuning Application Performance

The other benefit to specifying FOR UPDATE clause is that can decrease the

possibility of deadlock. As we will discuss later in “Deadlock Behavior” on

page 445, deadlock is the situation that more than one application is waiting for
another application to release a lock on data, and each of the waiting applications is
holding data needed by other applications through locking. Let us suppose two
applications are trying to fetch the same row and update it simultanously in the
following order:

1. Applicationl fetches the row
2. Application2 fetches the row
3. Applicationl updates the row

4, Application2 updates the row

On step 4, Application2 should wait for Applicationl to complete the update and
release the held lock, and then start its updating. However, if you don’t specify
UPDATE clause when declaring a cursor, Application1 acquires and holds a S
(shared) lock on the row (step 1). That means the second application can also
acquires and holds a S lock without lock-waiting (step 2). Then the first application
tries to get a U (update) lock on the row to proces®BATE statement but must be
wait for the second application to release its holding S lock (step 3). Meanwhile the
second application also tries to get a U lock and gets into the lock-waiting status
due to the S lock held by the first application (step 4). This situation is a dead lock
and the transaction of the first or second application will be rolled back (see Fig. 6—
2).

Writing Better SQL Statements 411

c
o o
Appllcatlonl Application2 T 8
O C
DECLARE c1 CURSOR . DECLARE c1 CURSOR = @©
'OPEN c1 OPEN c1 SE
FETCHCl — —_—FETCHc1 <05
UPDATE tablea ™ 1. Acquire 2. Acquire UPDATE tablea ot
S Lock S Lock c O
Tablea ya =0
c
8.Try to get U Lock 4.Try to get U Lock =
and Wait and Wait =
rowl "/
DEAD
LOCK!

Fig. 6—2 Deadlock between two applications updating same data

If you specify FOR UPDATE clausein the DECLARE CURSOR statement, the U lock
will be imposed when Applicationl fetches the row and the second application will
wait for the first application to release the U lock. Thus, no deadlock will occur
between the two applications.

@ Note: In this example, we assume either of the two applications does not
usetheisolation level UR (Uncommitted Read). We will discussisolation
levelsin “Concurrency” on page 435.

Hereisan exampleto use the UPDATE OF clausein aSELECT statement.

EXEC SQL DECLARE cl CURSOR FOR select * from employee
FOR UPDATE OF job;

EXEC SQL OPEN c1;

EXEC SQL FETCH cl INTO...;

if (strcmp (change,"YES") == 0)

EXEC SQL UPDATE employee SET job=:newjob
WHERE CURRENT OF c1;

EXEC SQL CLOSE c1;

412 Chapter 6 Tuning Application Performance

For CLI programs, you can set SQL_MODE_READ_WRITE tothe DB2 CLI connection
attribute SQL_ATTR_ACCESS_MODE using SQLSetConnectAttr() functionto achieve
the same results. Refer to the SQLSetConnectAttr() section of the Call Level
Interface Guide and Reference for more information.

Specify the OPTIMIZE FOR n ROWS Clause

Specify the OPTIMIZE FOR n ROWS clausein the SELECT statement when the
number of rows you want to retrieve is significantly less than the total number of
rows that could be returned. Use of the OPTIMIZE FOR clause influences query
optimization based on the assumption that n rowswill beretrieved. This clause aso
determines the number of rows that are blocked in the communication buffer.

SELECT projno,projname,repemp FROM project
WHERE deptno=’D11’ OPTIMIZE FOR 10 ROWS

Row blocking is a technique that reduces database manager overhead by retrieving
ablock of rowsin asingle operation. These rows are stored in a cache, and each
FETCH request in the application gets the next row from the cache. If you specify
OPTIMIZE FOR 10 ROWS, ablock of rowsisreturned to the client every ten rows.

5 Note: The OPTIMIZE FOR n ROWS clause does not limit the number of
rows that can be fetched or affect the result in any way other than
performance. Using OPTIMIZE FOR n ROWS can improve the performance
if no more than nrows are retrieved, but may degrade if more than n rows
areretrieved.

Specify the FETCH FIRST n ROWS ONLY Clause

Specify the FETCH FIRST n ROWS ONLY clauseif you do not want the application to
retrieve more than n rows, regardless of how many rows there might bein the result
set when this clause is not specified. This clause cannot be specified with the FOR
UPDATE clause.

For example, with the following coding, you will not receive more than 5 rows:

Writing Better SQL Statements 413

SELECT projno,projname,repemp FROM project
WHERE deptno=’D11’
FETCH FIRST 5 ROWS ONLY

The FETCH FIRST n ROWS ONLY clause also determinesthe number of rowsthat are
blocked in the communication buffer. If both the FETCH FIRST n ROWS ONLY and

OPTIMIZE FOR n ROWS clause are specified, the lower of the two valuesis used to
determine the communication buffer size.

c
o
= O
© O
O c
22
g E
< o
o=

[0
£a
c
>
|_

Specify the FOR FETCH ONLY Clause

If you have no intention of updating rowsretrieved by a SELECT statement, specify
the FOR FETCH ONLY clausein the SELECT statement. It can improve performance
by allowing your query to take advantage of row blocking. It can also improve data
concurrency since exclusive locks will never be held on the rows retrieved by a
query with this clause specified (see “Concurrency” on page 435).

@ Note: Instead of th&0R FETCH ONLY clause, you can also use #oR
READ ONLY clause. FOR READ ONLY’ is a synonym forFOR FETCH ONLY’.

Avoid Data Type Conversions

Data type conversions (particularly numeric data type conversions) should be
avoided whenever possible. When two values are compared, it may be more
efficient to use items that have the same data type. For example, suppose you are
joining TableA andTab1eB using columrml of TableA and columrl of TableB

as in the following example.

SELECT * FROM TableA,TableB WHERE Al1=B1

If columnsAl andBl are the same data type, no data type conversion is required.
But if they are not the same data type, a data type conversion occurs to compare
values at run time and it might affect the performance. For exampleisifa

decimal column and B1 is an integer column and each has a value ‘123’, data type
conversion is needed, @sb1eA stores it as x'123C’, wheredsbleB stores it as

X'7B’.

414 Chapter 6 Tuning Application Performance

Also, inaccuracies due to limited precision may result when data type conversions
occur.

Other Considerations for Data Types

DB2 UDB allows you to use various data types. You can use SMALLINT, INTEGER,
BIGINT, DECIMAL, REAL, and DOUBLE for numeric data; CHAR, VARCHAR, LONG
VARCHAR, CLOB for character data; GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, and
DBCLOB for the double byte character data, and so on. As the amount of database
storage and the cost to process varies depending on the data type, you should
choose the appropriate data type.

The following are guidelines when choosing a data type:

Use character (CHAR) rather than varying-length character (VARCHAR) for short
columns. The varying-length character data type can save database storage when
the length of data values varies, but thereis a cost to check the length of each
datavalue.

Use VARCHAR or VARGRAPHIC rather than LONG VARCHAR or LONG VARGRAPHIC.
The maximum length for VARCHAR and LONG VARCHAR columns, VARGRAPHIC and
LONG VARGRAPHIC are almost same (32,672 bytesfor VARCHAR, 32,700 bytes for
LONG VARCHAR, 16,336 characters for VARGRAPHIC, and 16,350 characters for
LONG VARGRAPHIC) while LONG VARCHAR and LONG VARGRAPHIC columns have
several restrictions. For example, data stored in LONG VARCHAR or LONG
VARGRAPHIC columnsis not buffered in the database buffer pool. See Use
VARCHR or LONG VARCHAR? on Page XX (XREF) for futher description.
Useinteger (SMALLINT, INTEGER, BIGINT) rather than floating-point number
(REAL or DOUBLE) or decimal (DECIMAL) if you don’t need to have the fraction
part. Processing cost for integers is much more inexpensive.

Use date-time (DATE, TIME, TIMESTAMP) rather than character (CHAR). Date-time
data types consume less database storage, and you can use some built-in
functions for date-time data types such as YEAR and MONTH.

Use numeric data types rather than character.

For detailed information about the supported data types, refer the DB2 UDB SQL
Reference.

Minimize Data Transmission 415

Minimize Data Transmission

Network costs are often the performance gating factor for applications. A good first
step in investigating thisisto run the application, or individual queriesfrom it,
locally on the server and see how much faster it runs. That, and the use of network
monitoring tools, can indicate if network tuning or afaster network is called for.
Note that here “network” includes the local case, since even though local
connections have much less overhead than a network protocol, the overhead
significant.

>
O
c
I
IS
S
O
e
o
o
o

c
o
=
I
L
o
o
<
o
£
c
=
|_

@ Note: If there is a relatively small set of queries in the application,
db2batch is a good tool to investigate the queries. See XREF.

If the network itself is in good shape, you should focus on reducing the number of
calls that flow from the application to the database (even for local applications).

There are several ways to reduce network costs. Here we will introduce two ways
which involve having multiple actions take place through one call.

Compound SQL

Compound SQL is a technique to build one executable block from several SQL
statements. When a compound SQL is being executed, each SQL statements in the
block is executed individually, but the number of requests transmitting between
client and server can be reduced.

Here is an example executing two UPDATE statements and one INSERT statement
using compound SQL:

EXEC SQL BEGIN COMPOUND ATOMIC STATIC
UPDATE tablea SET cola = cola * :varl;
UPDATE tableb SET colb = colb + :var2;
INSERT INTO tablec (colc,cold,cole) VALUES (:i,:3,0);
END COMPOUND;

When you execute a compound SQL, you can choose two types of compound SQL,
atomic and not atomic. The type determines how entire block is handled when one
or more SQL statements in the block end in error. The type of the example above is
atomic.

416 Chapter 6 Tuning Application Performance

Atomic: If one of the statementsin the block endsin error, the entire block is
considered to have ended in and error, and any changes made to the database within
the block will be rolled back.

Not Atomic: When all statements have completed, the application receive a
response. Even if one or more statements in the block end in error, the database
manager will attempt to execute al statementsin the block. If the unit of work
containing the compand SQL is rolled back, then all changes made to the database
within the block will be rolled back.

You can also use compound SQL to improve performance of the IMPORT utility,
which repeats data inserts. When you specify MODIFIED BY COMPOUND=x option (X
is the number of inserts compounded into one block), the IMPORT utility build a
block from multipleinserts. You will gain significant performance improvement
from this option. See Import utility on Page?? for more information.

Stored Procedure

A stored procedure resides on a database server, executes, and accesses the
database locally to return information to client applications. Using stored
procedures allows a client application to pass control to a stored procedure on the
database server. This allows the stored procedure to perform intermediate
processing on the database server, without transmitting unnecessary data across the
network. Only those records that are actually required are transmitted. This can
result in reduced network traffic and better overall performance.

A stored procedure also saves the overhead of having aremote application pass
multiple SQL statementsto a database on a server. With asingle statement, a client
application can call the stored procedure, which then performs the database access
work and returnsthe results to the client application. The more SQL statements that
are grouped together for execution in the stored procedure, the larger the savings
resulting from avoiding the overhead associated with network flows for each SQL
statement when issued from the client.

To create astored procedure, you must write the application in two separate
procedures. The calling procedure is contained in a client application and executes
on the client. The stored procedure executes at the location of the database on the
database server.

5 Note: Since Version 7.1 release, you can write a stored procedure using
SQL statements within a CREATE PROCEDURE statement.

Minimize Data Transmission 417

If your system has a large number of stored procedure requests, you should
consider tuning some database manager configuration parameters, which are
explored in the following sections.

Nested Stored Procedures

Nested stored procedures are stored procedures that call another stored procedure.
Up to 16 levels of nested stored procedure calls are supported. By using this
technique, you can implement more complex procedural logic without increasing
client side overhead.

©
3]
c
I
IS
S
o
e
o
[
o

c
o
=
I
Q2
=3
o
<
o
£
=
=
|_

Keep Stored Procedure Processes

You can define two types of stored procedure, non-fenced or fenced. Non-fenced
procedures run in the database manager operating environment’s process, whereas
fenced procedures are processed in other processes to be insulated from the internal
resources on the database manager. Therefore, not-fenced procedures can provide
better performance, but could cause problems to the database manager if they
contain bugs.

In an environment in which the number of fenced stored procedure requests is

large, you should consider keeping a stored procedure process (called DARI
process) idle after a stored procedure call is completed. This consumes additional
system resources; however, the performance of a stored procedure can be improved
because the database manager does not have to create a new DARI process for each
stored procedure request.

To keep DARI processes idle, set the database manager configuration parameter
KEEPDARI toYES. This is the default value. You can set this configuration parameter
by using the Control Center, or by executing the following command from the
Command Line Processor in the DB2 UDB Server:

db2 UPDATE DBM CFG USING keepdari yes

If you are developing a stored procedure, you may want to modify and test loading
the same stored procedure library a number of times. This default setting,
KEEPDARI=YES may interfere with reloading the library and therefore you need to
stop the database manager to load the modified stored procedure library. It is best
to change the value of this keywordniowhile developing stored procedures, and
then change it back s when you are ready to load the final version of your
stored procedure.

418 Chapter 6 Tuning Application Performance

@ Note: For Java stored procedures, even though you set KEEPDARI=YES,
you can force DB2 UDB to load new classes instead of stopping the
database manager. See “Refresh Java Stored Procedure Classes” on
page 418

You can use the database manager configuration parameter MAXDARI to control the
maximum number of the DARI processes that can be started at the DB2 UDB
server. The default value is dictated by the maximum number of coordinating
agents, which is specified by the MAX_COORDAGENTS database manager
configuration parameter. Since no more than one DARI process can be active per
coordinating agent, you cannot set a bigger va ue than the maximum number of
coordinating agents. Make sure this parameter is set to the number of applications
allowed to make stored procedure calls at one time.

You can set the NUM_INITDARIS database manager configuration parameter to
specify the number of initial idle DARI processes when the database manager is
started. The default valueis 0. By setting this parameter and KEEPDARI parameter,
you can reduce the initial startup time for fenced stored procedures.

Load Java Virtual Machine for Stored Procedure Processes

When your application call afenced Java stored procedure, the DARI process for
the stored procedure |oads the Java Virtual Machine (JVM). Therefore, if you want
to reduce the initial startup time for fenced Java stored procedures, you should set
the database manager configuration parameter INITDARI_JVM=YES so that each
fenced DARI process loads the VM when starting. Thiswill reduce the initial
startup time for fenced Java stored procedures when used in conjunction with the
NUM_INITDARI parameter and KEEPDARI parameter.

This parameter could increase theinitial load time for non-Java fenced stored
procedures as they do not require the VM.

Refresh Java Stored Procedure Classes

When afenced DARI process execute a Java stored procedure, the process loads
the VM and the VM locks the Javaroutine class for the stored procedure. If you
set KEEPDARI=NO, the lock will be released after the stored procedure is completed
and the DARI process is terminated; however, if you set KEEPDARI=YES, the DARI
process and the VM is up even after the stored procedure terminates. That means
even though you update the Java routine class for the stored procedure, DB2 UDB
will continue to use the old version of the class.

Embedded SQL Program 419

To force DB2 UDB to load the new class, you have two options. Oneis restarting
the database manager, which may be not always acceptable. The other option is
executing a SQLJ . REFRESH_CLASSES statement. By executing this command, you
can replace Java stored procedure classes without stopping the database manager
even if you set KEEPDARI=YES. Execute the following from the command line:

©
O
c
I
IS
S
o
e
o
[
o

db2 CALL SQLJ.REFRESH_CLASSES()

c
o
=
5
L
o
o
<
o
£
c
=
|_

@ Note: You can hot update not-fenced Java stored procedure without
stopping and restarting the database manager.

Embedded SQL Program

Embedded SQL programs are those statement in which SQL statements are
embedded. You can write embedded SQL programs in the C/C++, COBOL,
FORTRAN, Java (SQLJ), and REXX programming languages, and enable them to
perform any task supported by SQL, such as retrieving or storing data.

Static SQL

There are two types of embedded SQL statements: static and dynamic. Static SQL
statements are ones where the SQL statement type and the database objects
accessed by the statement, such as column names, are known prior to running the
application. The only unknowns are the data values the statement is searching for
or modifying. You must pre-compile and bind such applications to the database so
that the database manager analyzes all of static SQL statements in a program,
determines its access plan to the data, and store the ready-to-execute application
package before executing the program. Because all logic to execute SQL
statements is determine before executing the program, static SQL programs have
the least run-time overhead of al the DB2 UDB programming methods, and
execute faster.

420 Chapter 6 Tuning Application Performance

To prepare all SQL statementsin a static embedded SQL program, all database
objects being accessed must exist when binding the package. If you want to bind
the package when one or more database objects are missed, specify the option
SQLERROR CONTINUE in conjunction with VALIDATE RUN intheBIND or PREP
command. Though you encounter errorsfor SQL statements which try to access
missing database objects, the package will be bound. For the SQL statements
which had errors during the bind, the rebind process will be performed at execution
time. If you want to have the least run-time overhead, make sure that all database
objects being accessed exists during the bind.

When and How the Access Plan is Determined?

The DB2 optimizer determines the best access plansfor static SQL programs when
the bind operation is performed. The determination is done based on the statistic
information stored in the system catal og. Obsol ete statistics information may lead
the DB2 optimizer to select ainefficient access plans and may cause performance
problem. Therefore, it is very important to collect the up-to-date statistics
information using RUNSTATS utility before binding packages.

Since static SQL statements are processed based on the access plans determined
during the bind, there might be better access plansif you make alot of changesto
the database after the bind. For example, assuming you have avery small table with
an index and your application has static SQL statements retrieving data from the
index keys, then the application tends to access the table using table scans rather
than index scans because the size istoo small to benefit from index scans; however,
if the table considerably grows up, index scans are preferable. In such a case, you
should consider executing RUNSTATS to refresh the table and index’s statistic
information stored in the system catalog, and exeREEEND command to take
new access plans for the static SQL statements.

There are various forms @ENSTATS, but a good default to use is:

RUNSTATS ON TABLE xxx AND DETAILED INDEXES ALL

Adding theWITH DISTRIBUTION clause can be a very effective way to improve
access plans where data is not uniformly distributed.

Embedded SQL Program 421

Access Path to Volatile Tables

If you have volatile tables whose size can vary from empty to quite large at run
time, relying on the statistics collected by RUNSTATS to generate an access path to a
volatile table can be misleading. For example, if the statistics were collected when
the volatile table was empty the optimizer tends to favor accessing the volatile
table using atable scan rather than an index scan. If you know atable isvoldtile,
you can let the DB2 optimizer to select index scans regardless of the existing
statistics of thistables by executing ALTER TABLE statement with VOLATILE option.

c
o
- O
© O
o c
=8
g E
< o
o=

[0
£a
c
=
|_

ALTER TABLE tablename VOLATILE

When atableis known to be volatile to the optimizer, it will favor index scans
rather than table scans. This means that access paths to a voltile table will not
depend on the existing statistics on this table. These statisticswill beignored by the
optimizer because they can be misleading in the sense that they are static and do
not reflect the current content of the table.

To deactivate the volatile option and let the DB2 optimizer choose access paths
based on the existing statistics, execute the following statement:

ALTER TABLE tablename NOT VOLATILE

Dynamic SQL

Dynamic SQL statements are ones that your application builds and executes at run
time. An interactive application that prompts the end user for key parts of an SQL
statement, such as the names of the tables and columns to be searched, is agood
example of dynamic SQL. The application builds the SQL statement whileit is
running, and then submits the statement for processing. Generally, dynamic SQL
statements are well-suited for applications that run against arapidly changing
database where transactions need to be specified at run time.

When and How Access Plan is Determined?

Dynamic Embedded SQL requires the precompile, compile and link phases of
application devel opment. However, the binding or selection of the most effective
dataaccess planis performed at program execution time, asthe SQL statementsare
dynamically prepared.

422

Chapter 6 Tuning Application Performance

An embedded dynamic SQL programming module will have its data access method
determined during the statement preparation and will utilize the database statistics
available at query execution time. Choosing access plan at program execution time
has some advantages and a drawback. The advantages are:

» Current database statistics are used for each SQL statement.

« Database objects do not have to exist before run time.

« Moreflexible than static SQL statements.

A drawback is that dynamic SQL statements can take more time to execute since
queries are optimized at run time. To improve your dynamic SQL program’s
performance, the followings are keys:

« EXxecute RUNSTATS after making significant update to tables or creating indexes
* Minimize preparation time for dynamic SQL statements
Keeping statistics information up-to-date helps the DB2 optimizer to choose the

best access plan. You do not need to rebind packages for dynamic SQL programs
after excuting RUNSTATS since access plan is determined at run time.

We will discuss how to minimize preparation time for dynamic SQL statementsin
the following section.

Avoid Repeated Prepare

When an SQL statement is prepared it is parsed, optimized, and made ready to be
executed. The cost of preparing can be very significant, especialy relative to the
cost of executing very simple queries (it can take longer to prepare such queries
than to execute them). To improve the performance of dynamic SQL, the global
package cachewasintroduced in DB2 UDB Version 5.0. The generated access plan
for an SQL statement is stored in the global package cache, and it can be reused by
the same or other applications. Thus, if the same exact statement is prepared again,
the cost will be minimal. However, if thereis any difference in syntax between the
old and new statements, the cached plan cannot be used.

For example, suppose the application issues a PREPARE statement for the statement
"SELECT * FROM EMPLOYEE WHERE empno = €000100' ", then issues another
PREPARE statement for "SELECT * FROM EMPLOYEE WHERE empno = °000200'"
(the same statement but with a different literal value). The cached plan for the first
statement cannot be reused for the second, and the latter's PREPARE time will be
non-trivial. See the example shown in Fig. 6-3.

Embedded SQL Program 423

strcpy (stl,"SELECT * FROM EMPLOYEE WHERE empno=°000100"");
strcpy (st2,"SELECT * FROM EMPLOYEE WHERE empno=°000200"");
EXEC SQL PREPARE sl FROM :stl;

EXEC SQL PREPARE s2 FROM :st2;

EXEC SQL DECLARE cl CURSOR FOR s1;

EXEC SQL DECLARE c2 CURSOR FOR s2;

EXEC SQL OPEN c1;

EXEC SQL OPEN c2;

c
o
= O
© O
O c
22
g E
< o
o=

[T
£a
c
=
|_

Fig. 6—3 Dynamic SQL statements without a parameter marker

The solution is to replace the literab0100' by a question mark (?), issue a

PREPARE, declare the cursor for the statement, assign the literal when open the
cursor. By changing the program variable(s) appropriately before each OPEN
statement, you can reuse the prepared statement. See the example shown in Fig. 6—
4.

strcpy (st,"SELECT * FROM EMPLOYEE WHERE empno=’?"");
EXEC SQL PREPARE sl FROM :st;

EXEC SQL DECLARE cl CURSOR FOR sl1;

EXEC SQL DECLARE c2 CURSOR FOR sl1;

strcpy (parmvarl,'"000100");

strcpy (parmvar2,'"000100");

EXEC SQL OPEN cl using :parmvarl;

EXEC SQL OPEN c2 using :parmvar2;

Fig. 6—4 Dynamic SQL statements with a parameter marker

Parameter markers can and should be used not just for SELECT, but a so for repeated
executions of INSERT, UPDATE, or DELETE statements. For example, if your
applicationisusing EXECUTE IMMEDIATE to execute multiple statements that differ
only intheliteral valuesthey contain, those EXECUTE IMMEDIATE statements should
be replaced by PREPARE and EXECUTE statement using parameter markers. See the
following example to read records from afile and insert it into a table:

424

Chapter 6 Tuning Application Performance

for (end of file) {

//Read a record from the input file;

//Generate INSERT statement to store the record
//into a table and save the statement into
//the host variable stmt;

EXEC SQL EXECUTE IMMEDIATE :stmt

In this example, generated INSERT statements are prepared and executed for each
record being inserted. If the input file has many rows, preparing all INSERT
statements will be expensive. You should change this example as following:

strcpy(stmt,"INSERT INTO tablea VALUES (2,2,?)");
EXEC SQL PREPARE st FROM :stmt;
for (end of file) {

}}ﬁead a record from the input file;
//Assign read values into the host
//variables (varl,var2,var3) for the parameter markers;

EXEC SQL EXECUTE st USING :varl,:var2,:var3;

This example can complete the insert job faster since only one INSERT statement is
prepared and reused for all rows being inserted.

Tune Optimization Level

Sometimes another cause of long prepare timesiis the use of a query optimization
classthat is higher than necessary. That is, the DB2 UDB Optimizer can spend
more time finding the best access plan for aquery than isjustified by areduction in
execution time.

For exampleif the database has large number of concurrent activity, lots of simple
SQL statement to process, and a requirement to perform them in seconds, set the
optimization classto alower valuesuchas 1 or 2 by SET CURRENT QUERY
OPTIMIZATION statement. If you do not set any optimization level in the CURRENT
QUERY OPTIMIZATION special register, the DB2 optimizer will table thevalue set in
the DFT_QUERYOPT database configuration parameter.

Call Level Interface and ODBC | 425

Call Level Interface and ODBC

The DB2 UDB Call Levd Interface (CL1) is aprogramming interface that your C
and C++ applications can use to access DB2 UDB databases. DB2 CLI isbased on
the Microsoft Open Database Connectivity Standard (ODBC) specification, and
the X/Open and 1SO Call Levd Interface standards. Many ODBC applications can
be used with DB2 UDB without any modifications. Likewise, a CLI application is
easily ported to other database servers.

DB2 CLI and ODBC isadynamic SQL application development environment. The
SQL statements are issued through direct API calls. The DB2 optimizer prepares
the SQL statements when the application runs. Therefore, the same advantages as
dynamic embedded SQL programs are also true for DB2 CLI and ODBC
programs. Aswe saw in the previous section, the advantages are:

» Current database statistics are used for each SQL statement.
« Database objects do not have to exist before run time.
« More flexible than static SQL statements.

c
o
- O
© O
o c
=8
g E
< o
o=

[0
£a
c
>
|_

Moreover, DB2 CLI| and ODBC applications have the following advantages:

» Can store and retrieve sets of data.
» Can use scrollable and updatable cursors.
 Easy porting to other database platforms.

A drawback to use DB2 CLI and ODBC is that the dynamic preparation of SQL
statements can result in slower query execution.

Improve Performance of CLI/ODBC Applications

Since DB2 optimizer prepares the SQL statementsin CLI/ODBC programs at run
time like dynamic SQL programs, the follows are considerations to improve
performance:

« Execute RUNSTATS after making significant update to tables or creating indexes
* Minimize preparation time for SQL statements

Aswe have dready discussed, since the DB2 optimizer trysto find the best access
plan for each SQL statement based on the current statisticsinformation saved in the
system catal og, refreshing statistics information using RUNSTATS will help the DB2
optimizer to determine the best access plan.

426 Chapter 6 Tuning Application Performance

To minimize preparation time for SQL statementsin CLI/ODBC programs, you

should consider to avoid repeated prepare, and use appropriate optimization level

as discussed in the dynamic embedded SQL program section (see “Dynamic SQL”
on page 421). In the following sections, we will discuss how to avoid repeated
prepare and set optimization level in CLI/ODBC programs. We will also introduce
two methods to minimize preparation time for CLI/ODBC applications.

Avoid repeated prepare

When you need to execute multiple statements that differ only in the literal values
they contain, you can us@LExecDirect repeatedly for each statements; however,
this approach is expensive since each statement is prepared one by one. To avoid
preparing similar SQL statements repeatedly, you can us@.&nepare call

instead of multiplesQLExecDirect. Your program should perform the following
steps:

1. Call ansQLPrepare to prepare the SQL statement with parameter markers.

2. Issue arsQLBindParameter to bind a program variable to each parameter
marker.

3. Issue arsQLExecute call to process the first SQL statement.

4. RepeatQLBindParameter andSQLExecute as many times as required.

The ready-to-execute package prepareddiyprepare will be reused for each
SQL statement.

Tune Optimization Level

As discussed in the dynamic embedded SQL section, if the database is in such
environment as Online Transaction Processing (OLTP), which typically has lots of
simple SQL statement to process, set the optimization class to a lower value such
as 1 or 2. To set the optimization level within the applicationSasExecDirect

to issue &ET CURRENT QUERY OPTIMIZATION statement. To set the same
optimization level for all the CLI/ODBC applications on a client, use/BbaTE

CLI CFG command from the client as the following example:

UPDATE CLI CFG FOR SECTION databasel USING DB20PTIMIZATION 2

This command sets the CLI/ODBC keyw®®&POPTIMIZATION=2 in the

db2c1i.ini file so that the DB2 optimizer will use the optimization level 2 to
optimize SQL statements of all the CLI/ODBC applications accessing the database
databasel from this client.

Call Level Interface and ODBC | 427

Use an Optimized Copy of Catalog

Many applicationswritten using ODBC or DB2 CLI make heavy use of the system
catalog. Since the tables that make up the DB2 catal og contain many columns that
are not required by the ODBC driver, ODBC/CLI applications can cause DB2
UDB to retrieve alot of extraneous data when reading DB2 catal og data pages.
Also the ODBC driver often hasto join results from multiple DB2 catalog tablesto
produce the output required by the ODBC driver’s callable interfaces.

c
(@]
=
@©
k3]
=
o
<

Performance

Tuning

While this does not usually present a problem for databases with a small numk
database objects (tables, views, synonyms and so on), it can lead to performance
problems when using these applications with larger DB2 UDB databases.

This performance degradation can be attributed to 2 main factors: the amount of
information that has to be returned to the calling application and the length of time
that locks are held on the catalog tables.

The db2ocat tool solves both problems by creating separate system catalog tables
called theODBC optimized catalog tables that has only the columns necessary to
support ODBC/CLI operations.

The db2ocat tool is a 32-bit Windows program that can be used on Windows
workstations running the DB2 Version 6.1 (or later) Client. You can create ODBC
optimized catalog tables in DB2 databases on any platform from this tool running
on Windows workstations.

Using the db2ocat tool, you can identify a subset of tables and stored procedures
that are needed for a particular application and create a ODBC optimize catalog
that is used to access data about those tables. The following is the db2ocat tool GUI
to select tables which will be accessible through the ODBC optimized catalog:

428 Chapter 6 Tuning Application Performance

T= DB2 ODBC Catalog Optimizer

Help
1. D5SM | 2 CatalogMame 3 Tables | 4 Proceduresl) Applyl

Third Step: Select tables that will be accessible via the ODBC optimized catalog %

Select tables that will be acceszible via the ODBC optimized catalog by highlighting

them in the left list and moving them to the right list. To remove tables from the ight, ———
zelect them and click on the left arrow button. If you've made a mistake you can use

the "Reload" button to restore both lists to their oniginal contents.

Awailable tables Tables accessible by the catalog
STSIBM . SYSWRAPPERS ;I TETSUvA . EMPLOYEE
STYS5STAT . COLDIST > | TETSUYA . ORG

SvYSSTAT . COLUMNS
SYS5STAT . FUNCTIONS

SvS5TAT . INDEXES il
SYSSTAT . TABLES

TETSUYA A

TETSUvaA . CL_SCHED _<|
TETSUva . DEPARTMENT

TETSUvA . EMP_ACT

TETSUva . EMP_PHOTO il
TETSUva . EMP_RESUME

TETSUYA | IN_TRAY

TETSUva . PROJECT

TETSUYE . SALES
TETSUYA . STAFF ﬂ Heloadl
<<Back |

|'0CAT' updated.

Fig. 6-5 db2ocat tool

i'LDonel Eancell Help |

An ODBC optimized catalog consists of ten tables with specified schemaname. If
you specify 0CAT as the schema name during the creation of the ODBC optimized
catalog, the following tables will be created:

* OCAT.TABLES

* OCAT.COLUMNS

* OCAT.SPECIALCOLUMNS

* OCAT.TSTATISTICS

* OCAT.PRIMARYKEYS

» OCAT.FOREIGNKEYS

* OCAT.TABLEPRIVILEGES

* OCAT.COLUMNTABLES

* OCAT.PROCEDURES

* OCAT.PROCEDURESCOLUMNS

Call Level Interface and ODBC | 429

These tables contain only the rows representing database objects you selected and
the columns required for ODBC/CL | operations. Moreover, the tables are pre-
formatted for the maximum ODBC performance. By using the ODBC optimized
catalog, the ODBC driver does not need to acquire locks on the real system catalog
tables or perform join operations for results from multiple tables. Therefore,
catalog query times and amount of data returned as aresult of these queries are
substantially reduced.

You can have multiple ODBC optimized catalog for different clients. The ODBC
optimized catalog is pointed to by the CLISCHEMA keyword. If the schema name of
the ODBC optimized catalog is 0CAT, then set CLISCHEMA=0CAT indb2c1i.ini file
on the client. You can directly edit the db2cli.ini file or execute the following
command:

c
o
= O
© O
O c
=
g E
< o
o=

[0
£a
c
>
|_

UPDATE CLI CFG FOR SECTION databasel USING CLISCHEMA OCAT

The contents in the ODBC optimized catalog is not replicated automatically from
the system catalog. You must refresh the ODBC optimized catalog using the
db2ocat tool when you perform something which changes the system catalog such
as executing RUNSTATS or adding new columns (Fig. 6—6).

430

Chapter 6 Tuning Application Performance

T= DB2 ODBC Catalog Optimizer

Help
1. DSM | 2. Catalog Mame | 3. Tables | 4. Procedures

Fiith Step: Apply. %
To apply various changes to the the data source and the optimized catalog click the
appropriate button below, -

[Click | ta apply all changes to the data source and the optimized catalog.
Click | to refresh the optimized catalog tables.

[Elick | to update the data source with the new optimized catalog name.

<<Back| [dExtss | i'LDonel Eancell Help |

|New data retrieved.

Fig. 6—6 db2ocat tool (refresh ODBC optimized catal og)

The db2ocat tool isavailable at: ftp://ftp.software.ibm.com/ps/products/
db2/tools/ inthefiledb2ocat.exe. Thereadmefileis availablein the
db2ocat.zip file at the same site.

Convert ODBC/CLI into Static SQL

As ODBC/CLI applications are dynamic SQL applications, the most effective data
access plan of each query is generated at program execution time. This processis
expensive since the system catal og tables must be accessed for the resolution for

the SQL statements and the statements are optimized. By using the db2ocat tool

(see “Use an Optimized Copy of Catalog” on page 427), the cost to access the
system catalog can be reduced; however, ODBC/CLI applications and dynamic
SQL applications can be still slower than static SQL applications whose SQL
statements are ready-to-execute.

In this section, we introduce the method to convert ODBC/CLI applications into

static SQL applications. The information of an executed ODBC/CLI application

can be captured, and the executable form of statements are stored in the database as
a package. Other ODBC/CLI applications can use it like static SQL applications
without the preparation cost of the SQL statements.

Call Level Interface and ODBC | 431

G Note: You need to use DB2 UDB Version 7.1 or later to convert ODBC/
CLI applications to static SQL applications.

ODBCI/CLI applications run in the following three different modes:

* Normal Mode
Thisisthe default value and the traditional ODBC/CLI usage.

e Capture Mode
Thisisthe mode used by the database administrator who will run an ODBC/CLI
application to capture its connection and statement attributes, SQL statements,
and input as well as output SQLDAS. When a connection is terminated, the
captured information is saved into an ASCI| text file specified by
STATICCAPFILE keyword inthe db2c1i.ini file. Thisfile should be distributed
to other clients aswell asthe application, and also the package should be created
using the db2cap bind command, just asyou would create a package using the
bind command for a static SQL application.

* Match Mode
Thisisthe mode used by the end user to run ODBC/CLI applications that were
pre-bound and distributed by the database administrator. When a connection is
established, the captured information associated with the data source name will
be retrieved from the local capture file specified by STATICCAPFILE keyword in
thedb2c1i.ini file. If amatching SQL statement isfound in the capture file,
the corresponding static SQL statement will be executed. Otherwise, the SQL
statement will still be executed as a dynamic SQL statement.

These modes are specified using the STATICMODE keyword of the db2c11.1ni file
asin the following example:

[SAMPLE]
STATICCAPFILE=/home/db2instl/pkgl.txt
STATICPACKAGE=DB2INST1.0DBCPKG
STATICMODE=CAPTURE

DBALIAS=SAMPLE

This example specifies the capture mode. Captured information of the ODBC/CLI
application accessed SAMPLE databaseissaved into the /home/db2inst1/pkgl.txt
file. The STATICPACKAGE keyword is used to specify the package name to be later
bound by the db2cap bind command.

c
o
=
5
L
o
o
<
o
£
c
=
|_

©
O
c
I
IS
S
o
e
o
[
o

432 Chapter 6 Tuning Application Performance

You can directly edit the db2cli.ini file as shown above, or usethe UPDATE CLI CFG
command as the following example:

UPDATE CLI CFG FOR SECTION sample
USING STATICCAPFILE /home/db2instl/pkgl.txt
STATICMODE CAPTURE
STATICPACKAGE DB2INST1.0DBCPKG

The captured file is a text file, as shown in Fig. 6—7:

CLCOMMON1]

CREATOR=
CLIVERSION=07.01.0000
CONTOKENUR=
CONTOKENCS=
CONTOKENRS=
CONTOKENRR=
CONTOKENNC=

[BINDOPTIONS]
COLLECTION=DB2INST1
PACKAGE=0DBCPKG
DEGREE=

FUNCPATH=

GENERIC=
OWNER=DB2INST1
QUALIFIER=DB2INST1
QUERYOPT=

TEXT=

[STATEMENT11]

SECTNO=

ISOLATION=CS

STMTTEXT=select DEPTNO,DEPTNAME,MGRNO,ADMRDEPT,LOCATION
from DEPARTMENT

STMTTYPE=SELECT_CURSOR _WITHHOLD
CURSOR=SQLCURCAPCS1
OUTVAR1=CHAR, 3, , FALSE, FALSE,DEPTNO
OUTVAR2=VARCHAR, 29, , FALSE, FALSE, DEPTNAME
OUTVAR3=CHAR, 6, , FALSE, TRUE,MGRNO
OUTVAR4=CHAR, 3, , FALSE, FALSE , ADMRDEPT
OUTVAR5=CHAR, 16, , FALSE, TRUE, LOCATION

Fig. 6—7 Captured File

Call Level Interface and ODBC | 433

G Note: Although this captured file has only one SQL statement, you can
capture more statements in a captured file.

If necessary, you can edit the captured file to change the bind options such as
QUALIFIER, OWNER, and FUNCPATH.

©
O
c
I
IS
S
o
e
o
[
o

c
o
=
I
L
o
o
<
o
£
=
=
|_

Thenthe db2cap bind command should be executed to create a package. The
captured file and the database name must be specified as the following example:

db2cap bind /home/db2instl -d sample

The created package name have the suffix number depending on itsisolation level.
The suffix for the package is one of the following:

0 = Uncommitted Read
1 = Cursor Stability

2 = Read Stability

3 = Repeatable Read

In our example, the only one package DB2INST1.0DBCPKG1 will be created since

our example shown in Fig. 6—7 has only one SQL statement using the isolation
level Cursor Stability. If the captured file has more than one statement and their
isolation levels are different, multiple packages will be created with different
suffixes.

You can have more than one captured file to create multiple packages in the same
database by executiriy2cap bind command for each captured file. Be sure that
the PACKAGE keyword of each captured file has different value since it is used to
determine the package name.

Lastly, you should distribute both the captured file and the application to all client
machines on which you intend to utilize the pre-bound package. On each client, the
STATICMODE keyword of thedb2c1i.ini file should be set @ATCH, and the

captured file should be specified using ST&TICCAPFILE keyword.

[SAMPLE]
STATICCAPFILE=/home/db2instl/pkgl.txt
STATICMODE=MATCH

DBALIAS=SAMPLE

434 Chapter 6 Tuning Application Performance

Java Interfaces (JDBC and SQLJ)

DB2 UDB provides support for many different types of Java programs including
applets, applications, servlets and advanced DB2 UDB server-side features. Java
programs that access and manipulate DB2 UDB databases can use the Java
Database Connectivity (JDBC) API, and Embedded SQL for Java (SQLJ) standard.
Both of these are vendor-neutral SQL interfaces that provide data access to your
application through standardized Java methods. The greatest benefit of using Java
regardless of the database interface, isits write once, run anywhere capability,
allowing the same Java program to be distributed and executed on various
operating platforms in a heterogeneous environment. And since the two Java
database interfaces supported by DB2 UDB are industry open standards, you have
the added benefit to use your Java program against a variety of database vendors.

For JDBC programs, your Java code passes dynamic SQL to a JDBC driver that
comes with DB2 UDB. Then, DB2 UDB executes the SQL statements through
JDBC APIswhich use DB2 CLI, and the results are passed back to your Java code.
JDBC issimilar to DB2 CLI in that you do not have to precompile or bind aJDBC
program, since JDBC uses dynamic SQL .

JDBC relies on DB2 CL I, thus performance considerations which we discussed in
the previous section are also applicable to JDBC applications. See “Improve
Performance of CLI/ODBC Applications” on page 425.

With DB2 UDB SQLJ support, you can build and run SQLJ programs that contain

static embedded SQL statements. Since your SQLJ program contains static SQL,

you need to perform steps similar to precompiling and binding. Before you compile

an SQLJ source file, you must translate it with the SQLJ translator to create native
Java source code. After translation, you can create the DB2 UDB packages using
the DB2 for Java profile customizeib@profc). Mechanisms contained within

SQLJ rely on JDBC for many tasks, like establishing connections.

Since SQLJ contains static SQL statements and their access plans are determined
before being executed, the same considerations as static embedded SQL programs
are applicable to SQLJ applications. See “Static SQL” on page 419.

Concurrency 435

Concurrency

When many users access the same database, you must establish some rules for the
reading, inserting, deleting, and updating of data records. The rulesfor data access
are set by each application connected to aDB2 UDB database and are established
using locking mechanisms. Those rules are crucial to guarantee the integrity of the
data but they may decrease concurrency on database objects. On a system with
many unnecessary locking, your application may take very long time to process
queries due to lock-waiting even if the system isrich in hardware resources and
well tuned. In this section we will discuss how you can control concurrency
appropriately and minimize lock-waits to improve your application’s performance.

c
o
- O
© O
o c
=8
g E
< o
o=

[0
£a
c
>
|_

To minimize lock-waits, what you should consider first is eliminating unnecessary
locks by performing the followings:

» |ssue COMMIT statements at right frequency.

e Specify FOR FETCH ONLY clausein SELECT statement.

e Perform INSERT, UPDATE, and DELETE at the end of a unit of work if possible.

» Choose the appropriate isolation level.

» Eliminate next key locks by setting DB2_RR_TO_RS=YES if acceptable.

* Releaseread locksusing WITH RELEASE option of CLOSE CURSOR statement if
acceptable.

« Avoid lock escalations impacting concurrency by tuning LOCKLIST and
MAXLOCKS database configuration parameter.

Each of these guidelines are further explored in the next sections.

Issue COMMIT Statements

Executing COMMIT statements takes overhead due to disk I/O such as flushing
logged data into disks; however, since all locks held in a unit-of-work are released
at the end of the unit-of-work, putting COMMIT statements frequently in your
application program improves concurrency. When your applicationislogically at a
point of consistency; that is, when the data you have changed is consistent, put a
COMMIT statement.

Be aware that you should commit a transaction even though the application only
read rows. Thisis because shared locks are acquired in read-only applications
(except uncommitted read isolation level, which will be discussed in the next
section) and held until the application issuesaCOMMIT or closes the cursor using the
WITH RELEASE option (it will be discussed later in this chapter).

436 Chapter 6 Tuning Application Performance

@ Note: If you opened cursors declared using WITH HOLD option, locks
protecting the current cursor position of them will not be released when a
COMMIT is performed. See the pages describing DECLARE CURSOR in the
DB2 UDB QL Reference for WITH HOLD option in detail.

Specify FOR FETCH ONLY Clause

A query with FOR FETCH ONLY clause never hold exclusive locks on the rows, thus
you can improve concurrency using this clause. See “Specify the FOR FETCH
ONLY Clause” on page 413

INSERT, UPDATE, and DELETE at End of UOW

When an application issues BNSERT, UPDATE, or DELETE statement, the

application aquires exclusive locks on the affected rows and will keep them until
the end of the unit of work. Therefore, perfofNSERT, UPDATE, andDELETE at the
end of a unit of work if possible. This provides the maximum concurrency.

Isolation Levels

DB2 Universal Database provides different levels of protection to isolate the data
from each of the database applications while it is being accessed.

These levels of protection are knownismation levels, or locking strategies.
Choosing an appropriate isolation level ensures data integrity and also avoids
unnecessary locking. The isolation levels supported by DB2 UDB are listed below,
ordered in terms of concurrency, starting with the maximum:

e Uncommitted Read
e Cursor Stability

* Read Stability

* Repeatable Read

Concurrency 437

Uncommitted Read

The Uncommitted Read (UR) isolation level, also known as dirty read, isthe
lowest level of isolation supported by DB2 UDB. It can be used to access
uncommitted data changes of other applications. For example, an application using
the Uncommitted Read isolation level will return al of the matching rows for the
query, even if that dataisin the process of being modified and may not be
committed to the database. You need to be aware that two identical queries may get
different results even if they are issued within a unit of work, since other
concurrent applications can change or modify those rows that the first query
retrieves.

c
o
- O
© O
o c
=8
g E
< o
o=

[0
£a
c
>
|_

Uncommitted Read transactions will hold very few locks. Thusthey are not likely
to wait for other transaction to release locks. If you are accessing read-only tables
or it is acceptable for the application to retrieve uncommitted data updated by
another application, use thisisolation level becauseit ismost preferablein terms of
performance.

@ Note: Dynamic SQL applications using this isolation level will acquire
locks on the system catal og tables.

Cursor Stability

The Cursor Stability (CS) isolation level locks any row on which the cursor is
positioned during a unit of work. The lock on the row is held until the next row is
fetched or the unit of work isterminated. If arow has been updated, thelock isheld
until the unit of work is terminated. A unit of work isterminated when either a
COMMIT or ROLLBACK statement is executed.

An application using Cursor Stability cannot read uncommitted data. In addition,
the application locks the row that has been currently fetched, and no other
application can modify the contents of the current row. As the application locks
only the row on which the cursor is positioned, two identical queries may still get
different results even if they are issued within a unit of work.

When you want the maximum concurrency while seeing only committed data from
concurrent applications, thisisolation level should be chosen.

Read Stability

The Read Stability (RS) isolation level locksthose rows that are part of aresult set.
If you have atable containing 10,000 rows and the query returns 10 rows, then only
10 rows are locked until the end of the unit of work.

438 Chapter 6 Tuning Application Performance

An application using Read Stability cannot read uncommitted data. Instead of
locking asingle row, it locks all rows that are part of the result set. No other
application can change or modify these rows. This means that if you issue a query
twice within aunit of work, the second run can retrieve the same answer set as the
first. However, you may get additional rows, as another concurrent application can
insert rows that match to the query.

5 Note: Remeber that selected rows are locked until the end of the unit of
work. Thus don’t forget to issueCaMMIT (or ROLLBACK) statement even if
your application is read-only. S0MMIT (or ROLLBACK) statement will
terminate the unit of work and release held locks.

Repeatable Read

The Repeatable Read (RR) isolation level isthe highest isolation level available in
DB2 UDB. It locksall rowsthat an application references within aunit of work, no
matter how large the result set. In some cases, the optimizer decides during plan
generation that it may get atablelevel lock instead of locking individual rowssince
an application using Repeatable Read may acquire and hold a considerable number

of locks. The values of LOCKLIST and MAXLOCKS database configuration parameters
(see “Configure LOCKLIST and MAXLOCKS parameter” on page 443) affects
this decision.

An application using Repeatable Read cannot read uncommitted data of a
concurrent application. As the name implies, this isolation level ensures the
repeatable read to applications, meaning that a repeated query will get the same
record set as long as it is executed in the same unit of work. Since an application
using this isolation level holds more locks on rows of a table, or even locks the
entire table, the application may decrease concurrency. You should use this
isolation level only when changes to your result set with in a unit of work are
unacceptable.

Choosing an Isolation Level

When you choose the isolation level for your application, decide which
concurrency problems are unacceptable for your application and then choose the
isolation level which prevents these problems. Remeber that the more protection
you have, the less concurrency is available.

Concurrency 439

« Usethe Uncommitted Read isolation level only if you use queries on read-only
tables, or if you are using only SELECT statements and getting uncommitted data
from concurrent applicationsis acceptable. Thisisolation level provides the
maximum concurrency.

» Usethe Cursor Stability isolation level when you want the maximum
concurrency while seeing only committed data from concurrent applications.

» Usethe Read Stability isolation level when your application operatesin a
concurrent environment. This means that qualified rows have to remain stable
for the duration of the unit of work.

» Usethe Repeatable Read isolation level if changesto your result set are
unacceptable. Thisisolation level provides minimum concurrency.

©
O
c
I
IS
S
o
e
o
[
o

c
o
=
5
L
o
o
<
o
£
c
=
|_

Setting an Isolation Level

Theisolation level isdefined for embedded SQL statements during the binding of a
package to a database using the ISOLATION option of the PREP or the BIND
command. Thefollowing PREP and BIND examples specify the isolation level asthe
Uncommitted Read (UR).

PREP programl.sqc ISOLATION UR

BIND programl.bnd ISOLATION UR

If no isolation level is specified, the default level of Cursor Stability is used.

If you are using the command line processor, you may change the isolation level of
the current session using the CHANGE ISOLATION command.

CHANGE ISOLATION TO rr

For DB2 Call Level Interface (DB2 CLI), you can use the SQLSetConnectAttr
function with the SQL_ATTR_TXN_ISOLATION attribute at run time. Thiswill set the
transaction isolation level for the current connection referenced by the
ConnectionHandle. The accepted values are:

e SQL_TXN_READ_UNCOMMITTED : Uncommitted Read
e SQL_TXN_READ_COMMITTED : Cursor Stability

440 Chapter 6 Tuning Application Performance

e SQL_TXN_REPEATABLE_READ : Read Stability
e SQL _TXN_SERIALIZABLE : Repeatable Read

You can also set the isolation level using the TXNISOLATION keyword of the DB2
CLI configuration as follows:

UPDATE CLI CFG FOR SECTION sample USING TXNISOLATION 1

The following values can be specified for the TXNISOLATION keyword:
1, 2,4, 8, or 32. Here are their meanings.

e 1 =Uncommitted Read

e 2= Cursor Stability (default)

* 4 =Read Stability

* 8= Repeatable Read

You can use the DB2 CLI configuration for JIDBC applications aswell. If you want

to specify theisolation level within the JDBC application program, use the
setTransactionIsolation method of java.sql.Connection. The accepted

values are:

e TRANSACTION_READ_UNCOMMITTED : Uncommitted Read
e TRANSACTION_READ_COMMITTED : Cursor Stability

e TRANSACTION_REPEATABLE_READ : Read Stahility

e TRANSACTION_ SERIALIZABLE : Repeatable Read

Eliminate next key locks

Next key locking is a mechanism to support Repeatable Read isolation level. If an
application modify atable using such operations as INSERT, DELETE, UPDATE,
the database manager will obtain key locks on the next higher key value than the
modified key so that other applications using Repeatable Read can get the same
result sets as long as it executes queries in the same unit of work.

However, if you don’t have any applications using Repeatable Read, it is no point
to use next key locking mechanism, and next key locks may cause the lock-
contention. In this case, you should B&t_RR_T0_RS=YES and eliminate next

locking as following:

db2set DB2_RR_TO_RS=YES

Concurrency 441

You may significantly improve concurrency on your database objects by setting
thisregistry variable.

This setting affects at instance level, and you need to stop and start the database
manager after changing the value.

©
3]
c
I
IS
S
o
e
o
[
o

CLOSE CURSOR WITH RELEASE

You should use the Read Stability isolation level when qualified rows have to
remain stable for the duration of the unit of work. If changes to your result set are
unacceptabl e, you should use the Repeatable Read isolation level. When using
Read Stability or Repeatable Read, more locks are hold than using Cursor Stability
or Uncommitted Read.

If you look at your application using Read Stability or Repeatable Read, you may
find that all queriesin the application do not need the protection which Read
Stability or Repeatable Read provides, that means, there may be queries which can
release locks before the end of the unit of work. For such queries, use CLOSE
CURSOR statement that includesWITH RELEASE clause when closing the cursor.

c
o
=
5
Q2
=3
o
<
o
£
c
=
|_

CLOSE c1 WITH RELEASE

If WITH RELEASE clauseis specified, all read locks (if any) that have been held for
the cursor will bereleased. If it isnot specified, held lockswill not be released until
the unit-of-work ends.

TheWITH RELEASE clause has no effect for cursors that are operating under the CS
or UR isolation levels. When specified for cursorsthat are operating under the RS
or RRisolation levels, the WITH RELEASE clause ends some of the guarantees of
those isolation levels because all read locks will be released before the end of the
unit of work. An RS and an RR cursor may experience the nonrepeatabl e read
phenomenon, which means if you open a cursor, fetch rows, close the cursor with
WITH RELEASE clause, reopen the cursor, and fetch rows again, then the second
query can retrieve the different answer set as the first because other applications
can update the rows that match to the query. An RR cursor may experience the
phantom read phenomenon as well. After closing the cursor with WITH RELEASE
clause, the second query can retrieve the additiona rows which were not returned
by the first query because other applications can insert the rows that match to the

query.

If acursor that isoriginally RR or RS isreopened after being closed using theWITH
RELEASE clause, then new read locks will be acquired.

442 Chapter 6 Tuning Application Performance

Lock Escalation

If your application acquires and holds locks on aimost of all rows in onetable, it
may be better to have one lock on the entire table. Each database allocates memory
areacalled lock list, which contains al locks held by all applications concurrently
connected to the database. Each lock requires 72 bytes of memory for an object that
has no other locks held on it, or 36 bytes of memory for an object that has existing
locks held on it. If anumber of row locks can be replaced with a single table lock,
the locking storage area can be used by other applications.

When DB2 UDB converts the row locks to atable lock on your behalf, thisis
called lock escalation. DB2 UDB will perform lock escalation to avoid resource
problems by too many resources being held for the individual locks.

Two database configuration parameters have a direct effect on lock escalation.
They are:

¢ LOCKLIST — defines the amount of memory allocated for the locks.

« MAXLOCKS — defines the percentage of the total lock list permitted to be
allocated to a single application.

There are two different situations for lock escalation:

» One application exceeds the percentage of the lock list as defined by the
MAXLOCKS configuration parameter. The database manager will attempt to free
memory by obtaining atable lock and releasing row locks for this application.

* Many applications connected to the database fill the lock list by acquiring a
large number of locks. DB2 UDB will attempt to free memory by obtaining a
table lock and releasing row locks.

Also note that the isolation level used by the application has an effect on lock
escalation:

» Cursor Stability will acquire row level locksinitialy. If required, table level
locks can be obtained in such a case as updating many rowsin atable. Usualy, a
very small number of locks are acquired by each cursor stability application
since they only have to guarantee the integrity of the datain the current row.

* Read Stability locks all rows in the original result set.

* Repesatable Read may or may not obtain row locks on all rows read to determine
the result set. If it does not, then atable lock will be obtain instead.

If alock escalation is performed, from row to table, the escalation process itself
does not take much time; however, locking entire tables decreases concurrency, and
overal database performance may decrease for subsequent accesses against the
affected tables.

Concurrency 443

Oncethelock list isfull, performance can degrade since lock escalation will
generate more table locks and fewer row locks, thus reducing concurrency on
shared objectsin the database. Your application will receive an SQL CODE of -912
when the maximum number of lock requests has been reached for the database.

Configure LOCKLIST and MAXLOCKS parameter

To avoid decreasing concurrency due to lock escalations or errors dueto alock list
full condition, you should set appropriate values for both LOCKLIST and MAXLOCKS
database configuration parameter. The default values of them may not be big
enough (LOCKLIST: 10 pages, MAXLOCKS: 10%) and cause excessive lock
escalations.

To determine the lock list size, estimate the following numbers:

c
o
- O
© O
o c
=8
g E
< o
o=

[0
£a
c
>
|_

« Average number of locks per application
» Maximum number of active applications

If you have no ideafor the average number of locks per application, execute an
application and monitor the number of held locks at the application level using the
Snapshot Monitor. To get the number of locks held by a particular application,
execute Snapshot Monitor as the following example:

GET SNAPSHOT FOR LOCKS FOR APPLICATION AGENTID 15

In this example, 15 isapplication handle number, which you can obtainusing LIST
APPLICATIONS command.

See Chapter 4 (XREF) for detailed information about the database system monitor
including the Snapshot Monitor and Event Monitor.

For the maximum number of active applications, you can use the value of
MAXAPPLS database configuration parameter.

Then perform the following steps to determine the size of your lock list:

« Cadculate alower and upper bound for the size of your lock list using the
following formula:

(Average number of locks per application * 36 * maxappls) / 4096
(Average number of locks per application * 72 * maxappls) / 4096

In the formula above, 36 isthe number of bytes required for each lock against an
object that has an existing lock, and 72 is the number of bytes required for the

444

Chapter 6 Tuning Application Performance

first lock against an object.

« Estimate the amount of concurrency you will have against your data and based
on your expectations, choose an initial value for LOCKLIST parameter that falls
between the upper and lower bounds that you have cal cul ated.

You may want to increase LOCKLIST if MAXAPPLS isincreased, or if the applications
being run perform infrequent commits.

When setting MAXLOCKS, you should consider the size of the lock list (LOCKLIST)
and how many locks you will alow an application to hold before alock escalation
occurs. If youwill allow any application to hold twice the average number of locks,
the value of the MAXLOCKS would be calculated as following:

100 * (average number of locks per application * 2 * 72 bytes per locks) / (locklist
* 4096 bytes)

You can increase MAXLOCKS if few applications run concurrently since therewill not
be alot of contention for the lock list space in this situation.

Onceyou have set LOCKLIST and MAXLOCKS database configuration parameters, you
can use the Snapshot Monitor and Event Monitor to validate or adjust the value of

the values of these parameters. Here are the monitor elements which you should be
interested in:

« Maximum number of locks held by a given transaction
» Total lock list memory in use
* Number of occurred lock escalations

You can check the maximum number of locks held by a given transaction using the
Event Monitor. You need to create an event monitor to get transaction events to get
thisinformation. This information can help you to determineif your applicationis
approaching the maximum number of locks available to it, as defined by the
LOCKLIST and MAXLOCKS database configuration parameter. In order to perform this
validation, you will have to sample several applications. Note that the monitor
information is provided at atransaction level, not an application level.

To check total lock list memory in use, you should use the Snapshot Monitor at
database level. If you notice that the monitored valueis getting closer to the locklist
size, consider to increase the value of the LOCKLIST parameter. Note that the
LOCKLIST configuration parameter is allocated in pages of 4K bytes each, while
this monitored value isin bytes.

To check the number of occurred lock escalations, you can use the Snapshot
Monitor at database level. If you observe many lock escalations, you should
increase the value of LOCKLIST and/or MAXLOCKS parameter.

Concurrency 445

See Chapter 4 (XREF) for detailed information about the Event Monitor and
Snapshot Monitor.

Lock Wait Behavior

What happens if one application requests to update arow that is already locked
with an exclusive (X) lock? The application requesting the update will simply wait
until the exclusive lock is released by the other application.

c
o
- O
© O
o c
=8
g E
< o
o=

[0
£a
c
>
|_

To ensure that the waiting application can continue without needed to wait
indefinitely, the LOCKTIMEOUT database configuration parameter can be set to
define the length of the time-out period. The value is specified in seconds. By
default, the lock time-out is disabled (set to a value of -1). This means the waiting
application will not receive atime-out and wait indefinitely.

Statement Level Rollback

If atransaction waits for alock longer than the time the LOCKTIMEOUT parameter
specifies, the entire transaction will be rolled back by default. You can make this
roll back due to time-out at statement level by setting the db2 registry variable
DB2LOCK_TO_RB=STATEMENT by the following command:

db2set DB2LOCK TO_RB=STATEMENT

This command should be executed by the instance owner, and you need to stop/
start the database manager to make this change effective. If you set
DB2LOCK_TO_RB=STATEMENT, lock time-outs cause only the current statement to be
rolled back.

Deadlock Behavior

In DB2 UDB, contention for locks by processes using the database can result in a
deadlock situation.

A deadlock may occur in the following manner:

* A locksrecord 1.

« B locksrecord 5.

« A attemptsto lock record 5, but waits since B aready holds alock on this
record.

« Bthentriesto lock record 1, but waits since A aready holds alock on this
record.

Concurrency 446

In this situation, both A and B will wait indefinitely for each otherslocks until an
external event causes one or both of them to rollback.

DB2 UDB uses a background process, called the deadlock detector, to check for
deadlocks. The processis activated periodically as determined by the DLCHKTIME
parameter in the database configuration file. When activated it checks the lock
system for deadlocks.

When the deadlock detector finds a deadlock situation, one of the deadlocked
applications will receive an error code and the current unit of work for that
application will be rolled back automatically by DB2 UDB. When the rollback is
complete, the locks held by this chosen application are released, thereby allowing
other applications to continue.

c
o
- O
© O
o c
=8
g E
< o
o=

[0
£a
c
>
|_

To monitor deadlocks, you can use the Snapshot Monitor at database level aswell
as application level.

Since eliminating unnecessary locks minimize the possibility of deadlocks, tipswe
have discussed this section are also applicable to avoid deadlocks, therefore:

» |ssue COMMIT statements at right frequency

e Specify FOR FETCH ONLY clausein SELECT statement

e Specify FOR UPDATE clausein SELECT statement

» Choose appropriate isolation level

» Eliminate next key locks by setting DB2_RR_TO_RS=YES if acceptable

* Releaseread locksusing WITH RELEASE option of CLOSE CURSOR statement if
acceptable

» Avoid lock escalations impacting concurrency by tuning LOCKLIST and
MAXLOCKS parameter.

