Tuning for Top OLTP Performance

<performance components>

· system hardware & operating system

· informix Dynamic Server

· Database Design

· Application Design

· Network

<Typical OLTP system Characteristics>

· many users doing many adds / updates / deletes.

· queries via indexes (vs. scans).

· response times should be < 1-2 seconds.

· known / limited “windows” for periodic tasks

· requires short checkpoint time

· requires short “fast recovery” tims

<Tuning & Troubleshooting Approach>

1. identify / quantify problem

· collect data and establish baseline

- system information (hareware / software)

- output from O/S and informix utilities during idle time as well as heavy load

- application requirements

· better to collect too much information, than not enough

· especially important when looking for intermittent problems

2. determine measures

· query times (overall & specific ones)

· times for other tasks (update / delete / insert / load)

· keyboard or screen response

· navigation between screens/dialogs

3. define desired and acceptable performance

· or else you can get caught in a recursive loop

· aggregate vs. individual

· use as an opportunity to educate

4. clarify the problem (write it down)

· include both user and IS point of view

5. try to see “the problem” yourself

6. do what it takes to make problem repeatable

· keep logs : system changes / incidents

7. if you’re not on-site yet, identify possible courses of action which might have log lead-times

· hardware(disks, memory, processors)

· software updates(O/S, informix, Application)

==

<Tuning system hardware & OS>

identify possible inadequacies / Bottlenecks

· disk performance

· memory utilization

· processor load

· kernel parameters

remember, system Vendors / integrators may not know your application requirements, or the correct configuration for optimal informix performance
<system – disk performance>

Goal is even distribution, high throughput

· rotational latency, seek time, transfer rate

sar –b is analogous to a subset of onstat –p

iostat [drives] [interval] [count]

· bps = average number of bytes per second for previous interval

· tps = average number of transfers per second for previous interval

· ignore tin, tout, msps(milliseconds per average seek), cpu

sar –d

· %busy = percentage time device servicing request

· avque = average number requests outstanding

· avwait = average time (ms) requests wait for SVC.

· avserv = average time from request to completion

- Possible problem %busy > 30 or avserv > 50 ms

Performance monitor (winNT)

· Objects : physical disk or logical disk

· Counter : %disk time, disk bytes/sec

<system – processor load >

system load average (average number in run queue)

· the more processes competing for the same CPU cycles, the less cycles there are for each

· uptime (reports 1 min, 5 min, 15 min load average)

- convenient, but maybe not completely accurate since include jobs waiting for disk I/O, and

 doesn’t account for scheduling priority

· load average < 3 is generally comfortable

sar –q

· runq-sz = average length of run queue (in memory and runnable)

· %runocc = percentage time the run queue is occupied

· swpq-sz & %swpocc = average queue length and percentage occupancy of jobs “swapped out”

- if non-zero, at all, may indicate memory shortages

· runq-sz > 2 with high %runocc means heavy load.

 If high runq-sz, with low %runocc, possible memory or I/O problems

CPU utilization

vmstat [interval] or iostat [interval]

· Last 3 / 4 columns : %CPU spent running in :

Us = user-state >= default priority

Ni = user-state < default priority

Sy = system state (KIO, syscalls, overhead)

Id = idle (inclueds wa, if not shown)

Wa = waiting-for-disk-I/O(nothing but waiting)

· Goal : maximize user, minimize system & idle

WinNT using performance monitor

System load average

· Objects : server work queues

· Counter : queue length, work item shortages

CPU utilization

· Objects : processor

· Counter : %privileged time, %user time

If high idle time and high load average, likely problem is memory or network

If processor is idle even when under great load, more CPU may not help

If idle time is usually close to 0, faster or more CPUs will likely help

If I/O wait time is high, disk subsystem likely needs attention

What alternatives are there if your processor load is too high?

· Reduce priority (nice/renice) of “batch” jobs and CPU-intensive jobs

· Cut out unnecessary daemons(UNIX) or services(NT), or reduce their priority

· Move jobs or services to other systems or other times

· Check into other O/S or updated versions

<system – memory utilization>

virtual memory : paging, swapping, thrashing

vmstat [internal in seconds] [number of reports]

· page-ins / page-outs

 (pi / po, dmd, cch, fil, pft, frp)

· swap-ins / swap-outs (sw, si / so)

· procs runnable (r) , blocked (b), or swapped (w)

- if w > 0, system is not healthy

· number of free physical memory pages

 (fre, on some systems)

· -s option shows total activity since last reboot

sar –g (Sys V), or sar –pw (Berkley-derived)

· pgout/s = average number of page-outs per second (ideally, 0)

· pgfree/s = average number of pages added by page-stealing (if > 5, memory shortage)

· pgscan/s = average number of pages scanned in order to free memory (if > 5, memory shortage)

· vflt/s = number of references to pages not in memory (high values indicate lots of paging)

sar –g (Sys V), or sar –prw (Berkley-derived)

· pgfil/s = number of pages brought in

· rclm/s = number of pages reclaimed (should be zero)

· freemem = number of pages available to user processes

 (steady drops indicate swapping or paging)

· swpot/s = number pages transferred to swap per second (> 0 indicates memory shortage)

swap –l or vmstat –s

· lists info regarding pages on swap device, and number of successful/unsuccessful swap attempts

performance monitor(winNT)

· objects : paging file, memory

· counter : %Usage, %Usage Peak, Pages/Sec

if swapping occurs on an ongoing basis, either increase memory, reconfigure O/S kernel, reduce IDS memory requirement (resident and virtual portions), or reschedule jobs or move to other platform

to see CPU and memory consumption on a per-process basis under UNIX :

ps [-feal for Sys V] [-aux for BSD]

· %CPU = percentage CPU time used by a given process

· %MEM = percentage of total system memory used by this process

· SZ = amount of non-shared virtual memory, in KB or pages (Sys V)

· TIME = total amount of CPU time used by this process so far

To see CPU and memory consumption on a per-process basis under winNT

Performance monitor(winNT)

· Objects : process (each specific process monitored separately)

· Counter : page file bytes peak, working set peak, %processor time, virtual bytes peak

WinNT task manager (Ctrl + Alt + Delete)

· Processes tab

- Click headings, sort (CPU % / Time / Mem)

· Performance tab

- Quick graph CPU / memory, including physical / paged / non-paged

· Buy winNT resource Kit

<system – Kernel parameters>

always check values against release notes.

· $INFORMIXDIR / release / language / version / ONLINE_#

critical for shared memory & semaphores.

system can limp-by with lower-than-recommended kernel settings.
may be able to really trim back on Unix file system buffers, if the box is dedicated to IDS

NOFILES, NSTREAM, NQUEUE, NPROC, etc.

Relating to # users, processes, open files, maximum file size.

Some kernel parms have broad effect.

“netstat –m” may report on stream memory usage, including usage and failures.

May need to adjust Informix environment (eg, ulimit).

winNT resource kit(again) can provide good insight into tunable parameters.

==

<Tuning informix dynamic server>

disk / checkpoint time / processor / network / memory / archiving / locks / logging / task-specific configurations

<informix dynamic server – disk >

move databases out of rootdbs.

use raw partitions, to bypass O/S file handling. Under NT, performance may not be primary reason, but lower risk fo data loss, less impact on O/S.

move logical and physical logs onto separate spindles.

mirror (ideally hardware-based, with caching) rootdbs, logical log and physical log.

· preferred order : hardware, O/S, Informix

provide multiple, same size, temp dbspaces(DBSPACETEMP) : increased parallelization, and possible reduction in logging (application dependent)

· exception : huge index builds, archiving issues

informix works well with RAID. Guidelines

table extents :

· ideal number is 1, therefore accurately / generously size the first extent

· even though pages w/in extent are contiguous, multiple extents may be all over the disk, thereby causing lots of head movement

· use “oncheck –pe” or query “sysmaster:sysextents” to get a listing

· onstat –t will also show the count of extents for currently open tables, along with per-table(or fragment) reads/writes, number of rows, etc.

check I/O distribution :

· goal : even I/O across devices ; even across fragments of same table

· by device : onstat –D

- look at page Rd and page Wr

- remember, may have > 1 chunk on a singel device

· even better by chunk / file : onstat –g iof

- need good naming conventions to isolate activity if multiple chunks share on device

· by partition (table or fragment) : onstat –g ppf

 (like onstat –t, for currently open tables / fragments)

- look at reads and writes in 4 “is….” Cols

- also note seqsc column indicationg # sequential scans of that table

- partnum joins to sysfragments, which joins to systables

· onstat –g opn : # users accessing open tables

if supported on your paltform, use kernel asynchronous I/O

· confirm use by “onstat –g ioq”, look for kio lines (1 per CPU VP)

· if using KAIO, can reduce NUMAIOVPS to 1 or 2

 (only used for cooked I/O); have seen problems when set to 1, even when using KAIO

check I/O queue lengths :

· informix dynamic server has I/O queues for kernel(kio), cooked(aio), raw chunks(gfd), and special

· onstat –g ioq

- if len always > 10, or maxlen > 25 (on aio or gfd queues), either need more VPs or disk

 subsystem is saturated

· onstat –F

- if page cleaners are all active (state other than “I”) and I/O subsystem is not saturated, may

 need more page cleaners (CLEANERS)

<informix dynamic server – processor>

how many CPU VPs?

· Rule of thumb for OLTP : 1 less than # physical CPUs, min 1

· On a fast machine dedicated to IDS, may set it = # physical CPUs

· For certain DSS tasks, may even set > # CPUs

If running on uni-processor machine, make sure to set the following, to cut down on informix dynamic server overhead

MULTIPROCESSOR = 0

SINGLE_CPU_VP = 1

On a multiprocessor machine, when supported on your platform, set:

AFF_NPROCS = number of CPU VPs to “bind” to a processor

AFF_SPROC = at which processor number to start(if not sure, leave “first” processor free)

If supported, set NOAGE=1, to prevent O/S from dropping priority of informix dynamic server VPs

Onstat –g rea

Shows threads which are ready to run

Over time, if # threads always > # CPU VPs, requests aren’t being serviced fast enough

Onstat –g glo

· Give system process ids for all informix dynamic server VPs

- May need this number to ‘bind’ to a processor on some O/S

· Displays CPU utilization for CPU VPs:

- Over time, how busy = (total CPU VP utilization) / (elapsed time)

- Reset internal statistics with “onstat –z”

- Determine an actual amt. Of elapsed time

- At the end of that period, for a given VP, the closer(usercpu + syscpu) is to elapsed time, the busier that VP was

- High numbers indicate need for CPU VPs and / or physical processor

- Zero utilization can indicate VPs you don’t need (esp. AIO)

<informix dynamic server – memory>

Onstat –g seg

· Lists sizes of resident, virtual, and message segments

· If constantly allocating many additional virtual segments, better to allocate a single one of the desired size. (some O/S even have bug)

- SHMVIRTSIZE = initial size (in K)

- SHMADD = size for subsequent segment allocations

- SHMTOTAL = max amount informix dynamic server will allocate. Don’t leave as zero!

Onstat –p

· Goal : read %cached > 95, write %cached > 85

· Generally, increase BUFFERS to improve caching

- Don’t be afraid to use available memory

- 20 % to 75 % of real hardware

 (or even more, depending on application mix)

· high read-ahead pages can drop cache rate, if the pages are never used

· To check Read Ahead Efficiency

- ixda-RA + idx-RA + da-RA should come close to RA-pgsused (set RA_PAGES)

- bufwaits low as possible (set RA_THRESHOLD close to RA_PAGES, but a little less)

- diminishing return past 128 / 120 (PAGES / THRESH)

· if informix supports, and system resources are adequate, set RESIDENT = 1

- monitor system after doing this, to ensure paging / swapping hasn’t started

· on very large systems w/concurrent table access, look at data dictionary and distribution caches

- onstat –g dic

can increase DD_HASHSIZE = # hash lists, must be prime number

- onstat –g dsc

can increase DS_POOLSIZE = # distrs. Cached

set DS_HASHSIZE = prime #, 1/2 DS_POOLSIZE

quick way to tell if database / table has distributions

· 7.3 appears more memory consumptive (20% ?)

<informix dynamic server – locks>

correct locking granularity / isolation levels very importants

· though application-based, it can be monitored

· onstat –p

locks requested (lockreqs) & waited for (lokwaits)

if lokwaits > 1 % of lockreqs, indicates too much contention

· onstat –g ppf

can identify locking problems (waits) on particular tables / fragments

· onstat –k

display what type of locks are currently held

remember, 1 lock consumed for table, page or row, and each index

- don’t be afraid to increase LOCKS to several hundred per user (use very little

 memory)

lock with “tblsnum” of 100002 indicates database-level lock (HDR +S =shared /

 HDR+X=exclusive)

tie together lock owner column to address column of userthreads (onstat –u)

“intent” locks (+IX or +IS) can be a source of concurrency issues (or point to another

 problem)

<informix dynamic server – logging>

efficient use of physical and logical log buffers

· onstat –l

pages/io should be about 75% of bufsize

exception : if any open database uses unbuffered logging, logical log will get flushed based on

 transaction size, not degree of fullness

adjust PHYSBUFF and LOGBUFF

 (don’t go below default of 32K)

correct size for physical log

· rule fo thumb : minimum should be :

 (20 * max # users) * BUFFSIZE

· better to have excess capacity than risk overflow

· just prior to checkpoint, should be near 75% full(%used)

note : if observing on regular interval, heading of onstat changes to “CKPT xxx”
· unbuffered logging (on database) tends to cause much more write activity to logical log (since partially-filled pages are written out)

· for high-activity systems, ensure that the system never totally locks up due to a long transaction, by setting:

LTXHWM = 40

LTXEHWM = 50

LBU_PRESERVE=1

<informix dynamic server – checkpoint time>

two components : interval and duration

· the longer the interval between checkpoints, the longer the time to recover if failure occurs

· the longer the checkpoint duration, the more “down” time for users (and perceived performance problem)

· primary reasons a checkpoints occurs (interval)

either physical log has reached 75% full, or

CKPTINTVL seconds has elapsed since last checkpoint

· Primary factors in how long it takes (duration)

Number of modified pages to be written

Number of page cleaners

Number of I/O resources (kio/aio queues, CPU capacity, disks)

· View message log (onstat –m) to determine interval

If interval is never up to CKPTINTVL setting, should increase physical log size(PHYSFILE)

If interval is always CKPTINTVL, and physical log is never 75% full, should reduce size

Remember, during a fast recovery, you could wait at least 2 * CKPTINTVL amount of time

 before system back online (from original transaction plus rollback)

· Message log also displays duration

Reasonable goal for many OLTP systems should be 2 – 5 sec (or less)

· Three types of writes IDS can perform

Chunk / LRU / Foreground(fg)

· For OLTP, I/O should be predominantly LRU writes, with some chunk writes

· Onstat –F (to look at page flusher activity)

Fg writes should never happen. If so , indicates need for tuning

During checkpoint, if all flushers are busy, may need to add more (CLEANERS)

Rule of thumb : 1 or more per disk drive. Better performance may be achieved with 1 per

 chunk or dbspace

Number of LRU queues (LRUS config parameter)

- Generally, minimum of 4 LRU queues per CPU vp

- Never less than 1 per CPU vp (mutexes acquired)

- Rule of thumb : 1 per 1000 buffers (BUFFERS)

- Choose odd number , 1 less than you normally would

· Onstat –R (to look at LRU queues)

LRU_MAX_DIRTY = % of queue needing to be dirty (modified) before page cleaners start

LRU_MIN_DIRTY = % of queue which can remain dirty while still allowing page cleaners to

 stop

Over time, if % on modified is always < LRU_MAX_DIRTY, we’ll never do LRU writes –

 thus increasing duration of checkpoint

Over time, if % on modified queues are always > LRU_MAX_DIRTY, then page cleaners are

 not keeping up :

- Add cleaners (check onstat –F and see if they’re all busy)

- Increases IDS I/O VPs (check onstat –g ioq)

- Increase controllers and / or hard disks

· Reduce LRU_MAX_DIRTY and LRU_MIN_DIRTY

Don’t hesitate to bring them down dramatically 20 / 10 , 10 / 5, 8 /4 until the desired duration

 is met

· Be aware : as more LRU writes occur, all the other I/O components will be increasingly taxed, so need to iteratively monitor

<informix dynamic server – network>

· network poll threads (NETTYPE)

may have multiple entries, 1 per communication type defined in sqlhosts

poll threads run more efficiently on CPU vp than NET vp, so use these first

can’t have more poll threads running on CPU class than # of CPU vps

average 50 – 100 connections per poll thread. Can increase with faster CPUs

· sqlhosts configuration issues :

for all onipcshm connections, 4th col must be unique, or else corruption can occur

file created with that name in /INFORMIXTMP, containing address of shared memory segment

additional options for client-side to increase buffer size, timeout values, connection

 characteristics, etc.

“ershed.exe” winNT utility for registry editing

· experiment with FET_BUF_SIZE

· efficiencies of shm vs. tcp

not noticeable for “true” client-server RDB apps

can be quite a big hit for more “file-based” access (certain ERP programs experience this)

· onstat –g ntd

client type sqlexec is normal end-user session

- see rejected column, indicating network timeout or user-table overflow

· ilogin – useful utility to verify client connectivity

<informix dynamic server – archiving>

· possibilities to increase archive speed:

faster tape drives (DLT, or striping (RAIT))

parallel archives (separate dbspaces to separate tapes, or use onbar)

incremental archives (may incur longer restores)

make sure temporary tables are not logged – should be placed in temp dbspace

perform scheduled archives during “off-“hours

only archive data which can’t be restored from another source

· utility to verify integrity of archive : archecker

<informix dynamic server – task-specific configuration>

· data loading or index building

often better to load data with indexes and referential constraints dropped or disabled

if possible, shut off database logging (ontape –s –N)

[in 7. 31, you can now create a “RAW” table which is not logged, but exists within a logged

 database]

goal is to have most efficient I/O (checkpoint writes), and most memory to work with

depending on other activity, can increase BUFFERS to very large amount

increase LRU_MAX/MIN_DIRTY to high percentages (80/70 or 90/80)

increase CKPTINTVL to large time (1800 or 3600)

force checkpoint prior and following (onmode –c)

· index builds

set PDQPRIORITY to HIGH (or some value > 1)

set FILLFACTOR (part of CREATE INDEX stmt) according to table usage

- read-only tables should have FILLFACTOR = 100

- high-insert tables should have FILLFACTOR between 50 – 70

- other tables should have FILLFACTOR between 80-90

==

<Tuning the database>

data & index placement

distributions and statistics

locks & isolation

BLOB efficiencies

Constraints

<database – data & index placement>

· fragment large tables to facilitate balanced I/O, parallel operations, and fragment elimination

round robin is simplest, but can’t user elimination

can fragment indexes and data by different expressions, potentially limiting search to their

 intersection

· distribute tables and indexes to place I/O activity and join columns on separate disks

· may also gain benefits for archiving or detaching

<database – distributions / statistics>

incorporate UPDATE STATISTICS into overall application architecture / maintenance schedule (cyclical or usage)

· most important statement for improving performance

· 1. MEDIUM … DISTR ONLY for each table

 (adjusting RESOLUTION and CONFIDENCE)

· 2. HIGH separately for 1st col in each index (only 1x necessary if col in multiple indexes)

· 3. LOW for all columns in multi-col indexes

· 4. HIGH for any other cols used in equality expressions

· These can all be run in parallel, with plenty of DBSPACETEMP (multiple dbspaces ideal), and PDQPRIORITY > 0

· Remember, UPDATE STATISTICS is only to make optimizer choose the right query path. If you can accomplish that with fewer U.S.’s than above, great!

· Because U.S. can impact system performance, run in “off-“hours. If those don’t exist, set DBUPSPACE to limit amount of memory used by U.S., but will be slower

· Use dbschema –hd to examine distribution data. This may give insight into fragment expressions

<database – locks & isolation>

· make sure locking granularity is appropriate for application usage :

set LOCK MODE to PAGE for read-only lookup tables

set ISOLATION LEVEL based on application requirements

<database – BLOB efficiencies>

· if you need to capture variable-length text which is significantly smaller than the IDS BUFFSIZE (2K or 4K), either

- use tablespace BLOBS, or

- design an alternative to BLOBs

· don’t store in a BLOBspace, due to storage inefficiencies, bypassed buffer cache, and lack of true update

<database – constraints>

· where appropriate, incorporate referential integrity constraints into database

- this reduces the application-level data validation which must be done, but still requires error-

 handling code for whenever data is inserted or updated

==

<Application design>

minimize SQL PREPARE overhead

· all statements should be prepared and freed outside loops, only executed within loop

· don’t rely on implicit PREPAREs, since there are no implicit FREEs

· performance gains can be manyfold!

Tune individual queries

· Biggest potential performance gains to be found

· Use dbaccess to interactively test and improve problem queries

· Use SET EXPLAIN ON to see informix query plan

· If you don’t have access to source code

- You can still find SQL statement using “onstat –g sql” or “onstat –g ses”, or SMI tables

 syssessions and sysexplain (join sid and sqx_sessionid)

The query optimizer

· Certain applications may need to configure OPTCOMPIND to 0 rather than 2

· Needs good statistics to make good judgements

· 7.3 can make some funny decisions. May need to override with directives, which are placed within the SQL as comments (format: * … *\, {}, or --), and tell the optimizer to avoid or use certain tables, indexes, and join methods

· “set optimization’ causes optimizer to emphasize either : overall speed or first-row-retrieval speed

where appropriate, add indexes to improve query performance

· be aware that each index adds overhead during insert / update / delete

· may wish to drop some / all indexes before bulk loads, then recreate

· may wish to include “data” columns within index, thus allowing index-only read

where appropriate

· remove unused indexes

· use multiple ONCONFIG files, depending on type of system activity

· use TEMP tables to intelligently reduce joined data sets

- WITH NO LOG unless transactions are required

· Eliminate unnecessary variables, arrays, etc. to reduce executable size

Create a single monolithic app to cut down on process-startup overhead

· Faster navigation within a single application, compared to continuously starting separate executables

Use stored procedures where appropriate

· For many tasks, there may be a great performance improvement if the data does not need to be moved to/from the client for processing

==

<Network>

connection reliability

contention / congestion

performance

as always, get a baseline

<network – connection reliability>

· ping [hostname or ip address]

-t (winNT) ping continuously ; some systems do this by default

-l with pkt length [32 – 1526] (increased packet size helps identify transceiver, cabling or

 router issues, since signal stays on transaction medium for longer time)

· use traceroute (UNIX) / tracert (winNT) to identify things between source and destination systems

use –n option (UNIX only) to avoid having to do reverse DNS lookups (traces route more

 quickly, eliminates lookup time)

the 3 times shown are always roundtrip from source to that particular hop

- because return packets to all intermediate hops are errors / low priority, final time

 is usually quicker

· if possible, do these tests from UNIX or LINUX

much better features than NT ping (including ability to flood, reporting %packet loss and min /

 avg / max round-trip times

· if not going through routers, %loss should be 0

unless there’s a huge collision % on your segment

· netstat –e (winNT) or –i (UNIX)

will indicate # errors on a particular interface

· netstat –s

points to corruption iAn gateways (hosts / routers / switches) if significant percentage of

 checksums are bad

test each segment by copying a large file form system to system, and running netstat locally on

 each

<network – contention / congestion>

· netstat –e (winNT), or –i / -w (UNIX) will show collisions on a particular interface

must determine (via documentation) whether this is based on all packets on that segment, or

 only outbound from that machine

· however, there is a restricted version of “MS network monitor tools & agent” that comes with winNT server (installed from ControlPanel / Network / Services). NT can’t see full network utilization ; only what that machine is doing

· goal is to determin overall network utilization (at various times, to correlate it with system load)

· reasonable level of expected collisions %age based on overall utilization :

utilization : 10%, 20%, 30%, 40%, 50%

collisions : 1-2%, 3-10%, 7-12%, 10-15%, 14-25%

· use traceroute (UNIX) / tracert (winNT) timings to identify slow devices. Depending on what the device is, this may indicate a hareware error, or routing table misconfiguration

<network – performance>

· to get “true” testing of network performance use special hardware & software devices

· if you need a guaranteed network response time, don’t use Ethernet, go to Token Ring or FDDI

· ping can at least give you some expected amount of overhead time added to each client-side request

· on client machines, identify any network-consumptive tasks which may be candidates for deactivation

